
E�cient Test-Time Scaling with Large
Language Models

A thesis submitted in partial fulfillment
of the requirements for the degree of

Dual Degree

in

Computer Science & Engineering

by

Aradhye Agarwal
Entry No. 2020CS50417

Under the guidance of

Prof. Tanmoy Chakraborty
Prof. Rohan Paul

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi.

June 2025.

Certificate

This is to certify that the thesis titled E�cient Test-time Scaling with

Large Language Models being submitted by Aradhye Agarwal for the

award of Dual Degree in Computer Science & Engineering is a record

of bona fide work carried out by him under my guidance and supervision

at the Department of Computer Science & Engineering. The work

presented in this thesis has not been submitted elsewhere either in part or

full, for the award of any other degree or diploma.

Rohan Paul

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Tanmoy Chakraborty

Department of Electrical Engineering

Indian Institute of Technology, Delhi

Abstract

Test-time scaling (TTS), which involves dynamic allocation of compute dur-

ing inference, o↵ers a promising way to improve reasoning in large language

models. While existing TTS methods work well, they often rely on long de-

coding paths or require a large number of samples to be generated, increasing

the token usage and inference latency. We observe the surprising fact that

for reasoning tasks, shorter traces are much more likely to be correct than

longer ones. Motivated by this, we introduce First Finish Search (FFS), a

training-free parallel decoding strategy that launches n independent sam-

ples and returns as soon as any one completes. We evaluate FFS alongside

simple decoding, beam search, majority voting, and budget forcing on four

reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ32B and Phi-4-

Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II

and GPQA Diamond). With DeepSeek-R1, FFS achieves 82.23% accuracy

on the AIME datasets, a 15% improvement over DeepSeek-R1’s standalone

accuracy, nearly matching OpenAI’s o4-mini performance. Our theoretical

analysis explains why stopping at the shortest trace is likely to yield a cor-

rect answer and identifies the conditions under which early stopping may be

suboptimal. The elegance and simplicity of FFS demonstrate that straight-

forward TTS strategies can perform remarkably well, revealing the untapped

potential of simple approaches at inference time.

Contents

1 Introduction 1

2 Related Work 4

3 FFS: Our Proposed Method 8

4 Experimental Setup 12

5 Results 14

6 Analysis 17

7 Conclusion 20

8 Theoretical Results and Proofs 21

8.1 Short traces are more likely to be correct 21

8.2 Proof of Result 1 . 22

8.3 Proof of Result 2 . 23

8.4 Experimental Details . 24

8.4.1 Reasoning templates 24

8.4.2 Output parsing logic 24

8.4.3 Hyperparameters . 26

8.5 Reasoning Trace Samples . 26

Bibliography 42

List of Figures

1.1 Correct-incorrect trace length distribution 2

2.1 Sampling-based TTS strategies 5

3.1 AIME24 generated trace lengths 11

(a) Per-example trace length distribution 11

(b) P-value of normality test 11

6.1 Scaling behaviour of TTS strategies 17

6.2 Reasoning vs. non-reasoning trace length distribution 18

(a) R1-Distill-Qwen . 18

(b) QwQ-32B . 18

(c) DeepSeek-V3 . 18

© 2025, Indian Institute of Technology Delhi

List of Tables

2.1 Comparison of test-time scaling strategies 6

5.1 R1-Distill-Qwen and QwQ results 15

5.2 DeepSeek-R1, Phi-4 and DeepSeek-V3 results 15

6.1 Trace-length statistics and predicted FFS success rates 18

8.1 Reasoning template for AIME24 and AIME25 tasks. 24

8.2 Reasoning template for GPQA. 24

8.3 Decoding hyper-parameters 26

Chapter 1

Introduction

Large language models (LLMs) [32, 8, 20] have achieved impressive perfor-

mance on complex reasoning tasks [10], predominantly due to larger model

sizes, greater pretraining compute, and vast training corpora [15, 3]. Further

improvements, however, are proving increasingly di�cult to achieve as the

benefits of increasing model size diminish and the cost of further pretraining

rises [35]. Recent research has, instead, started exploring the possibility of

test-time intervention [29] for enhancing LLM performance. This approach,

known as test-time scaling (TTS) [24], dynamically allocates compute

during decoding in order to improve accuracy and consistency without any

additional training. TTS is especially e↵ective on complex and reasoning-

heavy benchmarks, where greater compute often translates into more reliable

and precise outputs. OpenAI’s o1 [20] and DeepSeek-R1 [8] are notable ex-

amples of models which utilize this approach.

According to the taxonomy proposed by [35], TTS strategies fall into three

main categories: parallel scaling [24, 4], sequential scaling [13, 14], and hy-

brid approaches [31, 28]. Parallel scaling methods, such as beam search

(BS), diverse beam search (DVBS) [26], and majority voting (MV), involve

generating multiple candidate outputs concurrently and selecting the best

response using heuristics or scoring functions. While these approaches excel

in throughput and leverage computational parallelism e↵ectively, they su↵er

from high token usage and require sophisticated mechanisms for evaluating

and comparing candidate responses. For instance, MV assumes that the

generated outputs can be easily compared using string equality or semantic

similarity, which is often not the case in open-ended tasks. Sequential scaling

techniques, on the other hand, extend the reasoning path deliberately with

methods like budget forcing (BF) [19] introducing artificial delay tokens such

as “Wait” to encourage deeper reasoning, while others like thought switch-

ing penalty (TIP) [27] discouraging premature shifts in reasoning direction.

© 2025, Indian Institute of Technology Delhi

2

While these methods are powerful in improving accuracy, especially in tasks

where extended deliberation leads to better answers, they are computation-

ally expensive and introduce latency, making them less suitable for real-time

or API-constrained deployments. Hybrid strategies, another class of TTS

methods, combine elements of both parallel and sequential scaling to adapt

to task di�culty and budget constraints. While combining diverse strategies

does allow test-time compute to be allocated more judiciously, hybrid meth-

ods, which mix sequential and parallel strategies, still su↵er from the same

weaknesses to a greater or lesser extent.

Figure 1.1: Distribution of trace
lengths for correct and incorrect re-
sponses generated by QwQ [33] and
R1-Distill-Qwen models [8]. The dis-
tributions show that shorter genera-
tion length and correctness are corre-
lated, providing empirical justification
for FFS.

To address these challenges, we in-

troduce First Finish Search (FFS),

a training-free test-time scaling

method that launches n samples

in parallel and selects the output

trace that completes first as the fi-

nal answer. FFS is motivated by a

surprising empirical finding (Figure

1.1) – for reasoning tasks, shorter

traces are significantly more likely

to be correct.1 FFS, unlike MV,

needs no equality check between

generated outputs, and unlike BF or

TIP, it requires no special tokens or

branching during decoding. It also

uses far fewer tokens, and requires

lesser sequential computation. We

validate FFS with experiments on four benchmarks (GPQA Diamond,

AIME24 and AIME25-I and AIME25-II) using four models: DeepSeek-R1,

its distilled variant R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-

Plus. Across all settings, FFS matches or exceeds the accuracy of strong

baselines such as MV and BF while reducing token usage by up to 45%.

1Note that Figure 1.1 actually implies the reverse, i.e., correct traces are more likely
to be short. We analyze in Appendix 8.1 as to why this also means that shorter traces are
more likely to be correct.

© 2025, Indian Institute of Technology Delhi

3

On AIME24 and AIME25 (AIME25-I and AIME25-II), with DeepSeek-R1,

FFS attains an accuracy of 82.23% on average, nearly reaching OpenAI’s o4-

mini (83.7%) accuracy.2 Our experiments show that FFS gains more from

increased model capacity than any competing method, enabling it to outper-

form every baseline on DeepSeek-R1. Our theoretical results show that FFS’s

expected sequential cost decreases with increasing sample count, demonstrat-

ing its compute e�ciency for inference-time scaling. These findings establish

FFS as a scalable, e�cient and e↵ective alternative for boosting LLM rea-

soning at test-time.3

2o4-mini accuracy is obtained from https://www.vals.ai/benchmarks/aime-2025-05-09

3The source code is available at https://github.com/Aradhye2002/reasoning exps

© 2025, Indian Institute of Technology Delhi

Chapter 2

Related Work

TTS techniques aim to improve LLM reasoning by dynamically adjusting the

compute budget [24] during inference, without needing expensive model fine-

tuning. Existing TTS methods can be categorized into two broad categories:

1. Training-based strategies. In these methods, the base model is fine-

tuned in order to follow a particular compute-allocation policy at inference

time. For instance, Inference-Aware Fine-Tuning (IA-FT) [5] optimizes a

supervised or RL objective directly targeting best-of-N accuracy: during

pretraining, the model learns to generate diverse candidates so that pass@N

is optimized. Similarly, L1 [2] trains the model to obey an explicit “think

for L tokens” instruction in the prompt, granting the user direct control over

the length of the chain-of-thought. While powerful, these methods require

access to model weights, substantial compute for fine-tuning, and are not

applicable to closed-source or API-only LLMs.

2. Training-free strategies. Instead of fine-tuning the existing model

weights, these methods work by adapting additional compute-allocation at

decoding time. Based on the decoding strategies, these methods can be fur-

ther classified into: parallel scaling, where decoding threads are launched

in parallel from the same prompt, and a selection rule picks one final output.

Examples include BS, which maintains a fixed-width beam of top-scoring par-

tial sequences; DVBS, which imposes diversity penalties to encourage varia-

tion before ranking; and MV/self-consistency, which samples N full answers

and returns the one with highest agreement. Other notable parallel scaling

strategies [12, 22, 35] utilize the best response based on an external reward

models. In contrary to parallel scaling methods, in another class of training-

free TTS approach sequential scaling, a single decoding thread deliberately

extends model’s reasoning chain to consume more tokens before yielding an

answer [9, 11]. Budget forcing interposes special “wait” tokens to delay termi-

nation artificially, while the TIP applies dynamic logit penalties to discourage

© 2025, Indian Institute of Technology Delhi

5

(a) BS (b) DVBS (c) MV (d) FFS

RM = RM = RM =

trace
diversity penalty

decoding

aggregation

length operator
equality operator

probability operator

num_beams = 3 num_beam_groups = 3
num_beams = 1

num_samples = 3
num_beams = 1

num_samples = 3
num_beams = 1

Figure 2.1: Sampling-based TTS strategies. (a) BS: expands k partial hy-
potheses synchronously, ranking both intermediate and final beams with the
model probability P(·). Beams share prefixes, so their lengths tend to remain
aligned. (b) DVBS: launches g independent single-beam groups; a diversity
term keeps the groups apart, so they may hit EOS at di↵erent steps. After all
groups finish, a verifier (again P(·) here) selects the best trace. (c) MV/self-
consistency: draws n complete, independent samples and picks the modal
answer using a string equality test “=”. (d) FFS: starts the same n stochas-
tic samples but terminates the batch as soon as the first trace reaches EOS;
all displayed arrows are therefore cut to that minimal length. The selection
rule is equivalent to maximising the negative length reward R(T) = �|T |.

early topic shifts. Recently proposed tree-based TTS methods [36, 30, 7, 34]

draw balance between sequential and parallel scaling strategies. Hybrid

scaling methods like Monte Carlo Tree Search (MCTS) [17, 21] and self-

backtracking [34] aim to recognize and correct suboptimal reasoning paths

through simultaneous parallel and sequential decoding.

This taxonomy highlights a clear operational divide: training-based approaches

encode compute decisions into the model parameters, while training-free

methods manipulate the decoding process itself. Within the latter, one must

choose between spawning many concurrent trajectories or elongating a single

trajectory, each with distinct implications. We evaluate these methods along

five dimensions:

• Training-free: Does the method require any fine-tuning or reinforce-

ment learning?

• API-friendly: Can the method be implemented using only standard

model-serving API?

© 2025, Indian Institute of Technology Delhi

6

Table 2.1: Comparison of test-time scaling strategies across five criteria.
“Training-free” indicates no additional model training is required; “API-
friendly” means the method can be implemented using standard inference
APIs without logit edits or repeated calls; “scalable” denotes the ability to
improve performance by allocating more compute; “T-parallelizable” means
total compute cost decreases when decoding is parallelized across more work-
ers; and “S-parallelizable” means sequential latency decreases as the number
of parallel samples increases. DVBS: diverse beam search, BS: beam search,
TIP: thought switching penalty, BF: budget forcing, SD: simple decoding,
MV: majority voting, LFS: last finish search, FFS: first finish search.

DVBS BS TIP BF SD MV LFS L1 FFS

Training-free 3 3 3 3 3 3 3 7 3

API-friendly 7 7 7 7 3 3 3 3 3

Scalable 3 3 7 3 7 3 3 7 3

T-parallelizable 3 3 7 7 7 3 3 7 3

S-parallelizable 7 7 7 7 7 7 7 7 3

• Scalable: Can performance continue to improve as we allocate more

compute (more samples or longer generations)?

• T-parallelizable: Does total GPU/CPU cost drop when decoding is

parallelized across more workers?

• S-parallelizable: Does the sequential latency (time to first answer)

decrease when we parallelize across more samples?

Table 2.1 summarizes how each method performs across key criteria. BS,

DVBS, and MV support parallel scaling by generating multiple outputs and

selecting the best (Figure 2.1); they are training-free and T-parallelizable, but

BS and DVBS are not API-friendly due to requiring custom diversity penal-

ties or verifier models, while MV is API-compatible but not S-parallelizable,

as it must wait for all outputs before voting. BF and TIP scale sequentially by

encouraging longer reasoning, are training-free, and potentially API-friendly

if token manipulation is allowed, but repeated API calls make BF prac-

tically infeasible; neither is parallelizable and both are limited by model

context length. Training-based methods like supervised fine-tuning and RL

© 2025, Indian Institute of Technology Delhi

7

approaches (e.g., IA-FT, L1) improve accuracy but require model access and

heavy compute, are API-incompatible, and are not parallelizable beyond the

model’s sequence limits. FFS combines the best of both: it is training-free,

API-friendly, uses standard sampling with a stop-when-finished rule, scales

arbitrarily with more samples, is T-parallelizable (lower cost with parallel

runs), and uniquely S-parallelizable (latency drops as shorter correct traces

finish early), making it a lightweight and e↵ective alternative.

© 2025, Indian Institute of Technology Delhi

Chapter 3

FFS: Our Proposed Method

Algorithm 1 Synchronous FFS (Sync-FFS)

Require: Reasoning model M, prompt x, number of traces n, max length
L

1: Initialize partial traces T1, . . . , Tn [BOS] � x
2: for ` = 1 to L do
3: Y M(T1, . . . , Tn) . one batched forward pass
4: for i = 1 to n do . sample next token for each trace
5: sample yi ⇠ softmax(Yi)
6: Ti Ti � yi
7: if yi = EOS then
8: T ?

 Ti . first finished trace
9: return T ?

10: end if
11: end for
12: end for
13: return T1 . fallback if no trace hit EOS

Algorithm 2 Asynchronous FFS (Async-FFS)

Require: Reasoning model M, prompt x, number of traces n, max decode
length L

1: Launch n asynchronous decoding jobs {J1, . . . , Jn}, each fed with x
2: while true do
3: for all running jobs Ji in parallel do
4: if Ji produces EOS or |Ti| = L then
5: T ?

 Ti . store the first finished trace
6: Interrupt all jobs Jk 6=i and free their resources
7: return T ?

8: end if
9: end for

10: end while

FFS runs n independent decoding operations in parallel and stops as soon

as any one trace emits the end-of-sequence token. The winning trace is

© 2025, Indian Institute of Technology Delhi

9

returned and all others are discarded. In order to ensure diversity among the

generations, FFS uses stochastic decoding with beam size 1.

FFS admits two implementations – Sync-FFS and Async-FFS, which consti-

tute the synchronous and asynchronous variants of the high-level algorithm,

respectively. Sync-FFS (Algorithm 1) loads a single copy of the model M

and processes a batch of n partial sequences in lock-step. At every decoding

step we sample one token for each partial sequence; if any of those tokens is

an EOS symbol, we immediately terminate decoding and return that com-

pleted trace. By sharing the model across all samples, Sync-FFS minimizes

total compute and memory, making it well suited for centralized servers or

GPUs. Async-FFS (Algorithm 2) launches n independent decoding jobs, on

separate processes or machines, all starting from the same prompt. When

any job produces EOS (or reaches the token limit), it interrupts the remain-

ing n � 1 jobs, frees their resources, and returns the completed trace. This

variant naturally fits distributed or multi-worker environments.

While our motivating hypothesis states that shorter reasoning segments are

likely to be more accurate, we simplify implementation by measuring the

entire trace length (reasoning plus final answer). Since the solution portion

is typically small, ranking by full length almost always aligns with ranking

by reasoning length. Also, while larger beams can reduce repetition, we

deliberately use beam size 1 in order to maximize the number of independent

samples, and consequently the chance that a short, correct trace finishes first.

In practice, repetitive or degenerate beams rarely finish earliest, so they are

automatically filtered out by FFS’s “first-to-finish” rule.

To back our claim that shorter traces are likelier to be correct, we derive

the following expression for the probability that a randomly drawn trace of

length x is correct.

Result 1. Suppose correct and incorrect samples are drawn from distinct

normal distributions with means µ1, µ2 and standard deviations �1, �2 respec-

tively. Let ↵ be proportion of samples that are correct. Then the probability

© 2025, Indian Institute of Technology Delhi

10

that a randomly sampled trace T of a given length x is correct is:

Pr
h
T is correct | |T | = x

i
=

0

B@1 +
1� ↵

↵

�1

�2
e
�
1

2

2

4
 x� µ2

�2

!2
�
 x� µ1

�1

!23

5
1

CA

�1

(3.1)

Since FFS always favours the shortest trace, we first examine the limiting

case x = 0 in Equation (3.1). With comparable variances (�1 ⇡ �2), the

simplified form shows that the probability of correctness is high only when

the mean length of incorrect traces exceeds that of correct ones, i.e., µ2 >

µ1. Empirically, reasoning models satisfy this inequality, confirming the link

between conciseness and accuracy. A parallel “long-trace” analysis for LFS

(x ! 1) is not meaningful. Beyond moderate lengths the empirical trace-

length distributions become heavy-tailed (Figure 3.1) and depart from the

normal assumption that underlies Equation (3.1). This analysis reveals that

correctness of a trace is closely linked to how short it is, making it crucial to

devise ways in order to discover increasingly shorter traces, with FFS being

one such e↵ective way.

To investigate how FFS’s cost reduces with increasing number of samples

n, we introduce the following result from extreme value theory [6], which

states that the di↵erence between the mean and expected minimum of n

i.i.d. normally distributed RVs is O(
p
log n).

Result 2. Let Y1, Y2, . . . , Yn be i.i.d. normally distributed random variables

with mean µ and standard deviation �, then as n!1, we have1

E
⇥
min{Y1, Y2, . . . , Yn}

⇤
= µ� �

p
2 log n (3.2)

E
⇥
max{Y1, Y2, . . . , Yn}

⇤
= µ+ �

p
2 log n (3.3)

In order to use Result 2 in our analysis of FFS, we define Yi as |Ti|, where Ti

is a trace sampled from the model M, and | · | is the usual length operator.

Since Ti’s are independently and identically sampled, Yi = |Ti| are i.i.d.

random variables. Yi’s are also normally distributed for reasoning models

1See Appendices 8.2 and 8.3 for detailed proofs.

© 2025, Indian Institute of Technology Delhi

11

(a) Per-example trace length distribution (b) P-value of normality test

Figure 3.1: Lengths of generated reasoning traces on AIME24. (a) Per-
example violin plots of trace length over 8 samples, for each question. (b)
Histogram of Shapiro-Wilk p-values for normality across examples, indicating
that most trace-length distributions do not reject the gaussian assumption.

as demonstrated through Figure 3.1. On application of Equation (3.2), we

obtain that the expectation of the minimum trace length (which is same as

FFS’s sequential cost) decreases in O(
p
log n), with increasing n. Whereas,

the maximum trace length (same as MV’s sequential cost) increases with n.

© 2025, Indian Institute of Technology Delhi

Chapter 4

Experimental Setup

We evaluate FFS with four reasoning models: Phi-4-Reasoning [1], DeepSeek-

R1 [8], QwQ-32B [25] and R1-Distill-Qwen [33] and one non-reasoning model:

DeepSeek-V3 [16]. On DeepSeek-R1 and Phi-4-Reasoning, we evaluate only

MV, LFS, and FFS, omitting BF and BS due to API constraints. On QwQ-

32B and R1-Distill-Qwen, we report results for all five methods: MV, LFS,

FFS, BF, and BS. Last finish search (LFS) is an additional baseline added

by us for comparison with FFS, where we take the last finished trace. We

conduct evaluations on four datasets: GPQA Diamond [23], AIME24 [18],

AIME25-I and AIME25-II. The AIME datasets (AIME24, AIME25-I, and

AIME25-II) totaling 60 problems, are derived from the American Invita-

tional Mathematics Examination, consisting of challenging high school-level

competition math problems. Each question has a numeric answer between

000 and 999. For consistent evaluation, we strip visual figures and convert

all problems into text, consistent with the approach of [19]. The GPQA Dia-

mond dataset comprises 198 graduate-level multiple-choice science questions

spanning physics, chemistry, and biology. Each question is designed to be

google-proof and tests high-level conceptual reasoning. The task templates

and output parsing logic for these datasets are provided in Appendix 8.4.

We evaluate each method using three metrics: (1) accuracy, measured as the

proportion of exact matches with ground-truth answers; (2) total compute,

defined as the total number of generated tokens across all parallel traces for a

given question; and (3) sequential compute, which is the minimum number

of sequential tokens required to be produced to obtain the final answer. For

GPQA, we consider a response correct only if the selected option exactly

matches the correct choice while for the three AIME datasets, only the last

integer matches are considered.

All models are evaluated in a zero-shot setting with no additional fine-

© 2025, Indian Institute of Technology Delhi

13

tuning.1 We use top p = 0.95 and temperature = 0.6 for all methods across

all datasets. For all sampling based methods (FFS, LFS, and MV) we take

the number of samples n = 4. Since AIME problems require deeper reason-

ing, we set a maximum generation length of 32K tokens; on GPQA Diamond,

16K tokens su�ce. Appendix 8.4.3 provides the complete hyperparameter

list.

1We use deepinfra.com API for all our evaluations.

© 2025, Indian Institute of Technology Delhi

Chapter 5

Results

Token-e�cient accuracy gains. Across all evaluated settings FFS ei-

ther matches or improves on baseline accuracy while reducing token usage

(Tables 5.1-5.2). With DeepSeek-R1 it scores 86.7% on AIME24 and 93.3%

on AIME25-II while averaging only 31.1K total tokens and 7.8K sequential

tokens per query, about 26% less compute than MV’s 42.2 K-token budget.

On the smaller R1-Distill-Qwen-32B model, FFS reaches 80.0% on AIME24

and 62.6% on GPQA using the same 7.8 K/31.3K token budget, whereas MV

consumes 15.7K/45.8K tokens for slightly lower scores. BS can equal FFS

on a few cases (e.g. 66.7% on AIME25-I) but does so at roughly 1.4 times

the compute cost.

Consistent improvements across models and datasets. FFS remains

competitive even on larger models. On QwQ-32B it reaches 78.0% on AIME25-

II, just 3.9 points less than MV’s top score while using 25% fewer tokens

(47.2K vs. 59.7K). For Phi-4-Reasoning-Plus, FFS increases GPQA accu-

racy to 67.2%, beating MV by 4.5 points while reducing the total token

budget by 24% (44.8K vs. 58.8K). On math-heavy AIME25-II it still attains

86.7%, matching MV’s peak performance but at a lower cost. In the most

compute-intensive setting of DeepSeek-R1 on AIME25-II FFS outperforms

LFS by 33% and beats MV by 13% while remaining the cheapest of the

multi-sample strategies.

Linear scalability and reduced latency. Since FFS halts decoding once

the shortest trace finishes, its cost scales linearly with the number of parallel

samples and never exceeds a single-trace budget. Concretely, FFS reduces

the sequential budget down to 7.8K tokens for DeepSeek-R1 and 11.8K for

QwQ-32B, compared with 13-19K for MV and LFS. These savings translate

© 2025, Indian Institute of Technology Delhi

15

Table 5.1: Accuracy (%) and compute cost (⇥103 tokens) for R1-Distill-Qwen
and QwQ-32B. Rows list metrics; columns list decoding methods. For each
method, token counts are averages over the datasets. Bold, gray cells mark
the best value in each row.

(a) R1-Distill-Qwen

Metric SD BF BS MV LFS FFS

Seq. tokens 11.4 25.7 11.2 15.7 15.7 7.8

Total tokens 11.4 25.7 44.8 45.8 45.8 31.3

GPQA 60.7 58.6 62.6 62.1 60.1 62.6

AIME24 68.3 60.0 66.7 77.9 60.6 80.0

AIME25-I 51.7 53.3 46.7 53.3 49.7 59.6

AIME25-II 46.7 57.1 57.1 60.0 60.0 46.7

(b) QwQ-32B

Metric SD BF BS MV LFS FFS

Seq. tokens 14.9 23.7 12.8 18.8 18.8 11.8

Total tokens 14.9 23.7 51.2 59.7 59.7 47.2

GPQA – 60.1 57.1 64.7 57.6 65.2

AIME24 79.2 86.7 80.0 83.5 80.1 81.2

AIME25-I 60.0 60.0 66.7 69.9 53.5 59.9

AIME25-II 69.2 71.4 78.6 81.9 70.4 78.0

Table 5.2: Accuracy (%) and compute cost (⇥103 tokens) for DeepSeek-R1,
Phi-4-Reasoning-Plus, and DeepSeek-V3. For each method, token counts
represent averages over all datasets. Bold, gray cells mark the best value per
row.

(a) DeepSeek-R1

Metric SD MV LFS FFS

Seq. tokens 10.6 13.8 13.8 7.8

Total tokens 10.6 42.2 42.2 31.1

GPQA 72.0 73.2 72.2 74.2

AIME24 75.0 83.3 70.0 86.7

AIME25-I 51.7 60.0 53.3 66.7

AIME25-II 75.0 80.0 60.0 93.3

(b) Phi-4-Reasoning-Plus

Metric SD MV LFS FFS

Seq. tokens 14.7 18.7 18.7 11.2

Total tokens 14.7 58.8 58.8 44.8

GPQA 62.9 67.7 70.2 67.2

AIME24 71.7 80.0 80.0 76.7

AIME25-I 66.7 73.3 80.0 66.7

AIME25-II 76.7 93.3 86.7 86.7

(c) DeepSeek-V3

Metric SD MV LFS FFS

Seq. tokens 2.7 4.4 4.4 1.4

Total tokens 2.7 10.8 10.8 5.5

GPQA 53.3 54.0 52.5 50.0

AIME24 30.0 40.0 40.0 23.3

AIME25-I 33.3 46.7 33.3 46.7

AIME25-II 16.7 20.0 20.0 20.0

directly into lower end-to-end latency in throughput-bound or API-metered

deployments.

Behaviour on a non-reasoning model. On DeepSeek-V3, a model with-

out explicit chain-of-thought supervision, we observe a reverse trend: MV

surpasses both LFS and FFS on every dataset, and FFS records the low-

est scores (e.g. 50% on GPQA and 20% on AIME25-II). This suggests that

the “shortest correct trace” bias exploited by FFS is specific to models that

already internalise multi-step reasoning.

FFS benefits from model scaling. The advantage of FFS widens with

capacity. Upgrading from R1-Qwen-32B to DeepSeek-R1 boosts the method’s

© 2025, Indian Institute of Technology Delhi

16

AIME accuracy from 80.0% to 86.7% on AIME24 and from 62.6% to 74.2% on

GPQA, while preserving its compute edge. FFS attains 93.3% on AIME25-

II, over 14 points higher than the strongest baseline, showing that it scales

more favourably with model size than competing approaches.

© 2025, Indian Institute of Technology Delhi

Chapter 6

Analysis

Figure 6.1: Accuracy versus total to-
ken budget for three test-time scal-
ing methods averaged over R1-Distill-
Qwen and QwQ-32B on AIME24 and
AIME25-I. FFS attains higher accu-
racy at lower budgets; MV improves
more slowly and consumes more to-
kens; BF plateaus near the 32K token
limit.

Scaling behaviour of TTS meth-

ods. Figure 6.1 plots accuracy

versus total token budget, averaged

over R1-Distill-Qwen and QwQ-

32B on the AIME24 and AIME25-I

tasks. BF attains roughly 30% ac-

curacy at the smallest budget and

then plateaus once the generation

reaches the 32K token limit. Its

final point drops slightly because

traces that hit this limit generally

yield no answer and are marked

incorrect. MV and FFS coincide

at the single-sample setting, both

achieving about 60% accuracy, since

FFS degenerates to MV when n =

1. As the number of samples in-

creases, MV’s accuracy improves

slowly but at the cost of a steep rise

in tokens, proportional to the mean trace length times the sample count.

FFS, in contrast, halts decoding as soon as the first trace finishes, reaching

comparable or higher accuracy with far fewer tokens; its curve therefore rises

more sharply. Across the entire budget range, FFS matches or surpasses MV

while operating at a lower cost.

A theoretical perspective on FFS’s scaling behavior with model

size. As demonstrated in Section 5, FFS shows greater relative improve-

ments on the more capable DeepSeek-R1 model compared to other baselines.

© 2025, Indian Institute of Technology Delhi

18

(a) R1-Distill-Qwen (b) QwQ-32B (c) DeepSeek-V3

Figure 6.2: Distribution of generated text lengths for di↵erent reasoning and
non-reasoning models on AIME24 and AIME25 datasets. Welch statistic of
13.53, 13.3 and 6.9 with p-values < 0.001 indicates the statistical significance
of the fact that correct traces are more likely to be shorter.

This aligns with our intuition: all traces begin in a correct state by default

(no reasoning has occurred yet). Consider now an idealized oracle model

that never transitions from a correct reasoning state to an incorrect one. In

this case, any trace generated would either be entirely correct or remain in-

complete. Therefore, among all correct traces, the shortest one would always

be optimal. As model capacity increases and approaches oracle-like behav-

ior, the likelihood of making an incorrect reasoning step diminishes. Conse-

quently, by favoring shorter correct traces, FFS naturally benefits from the

improved reliability of larger models, leading to its enhanced performance.

Table 6.1: Trace-length statistics and predicted FFS
success rates, measured per 1000 tokens. Averages are
computed over the AIME datasets.

Model Pr
Correct traces Incorrect traces

µ1 �1 µ2 �2

R1-Distill-Qwen 0.92 7.2 4.8 15.4 6.0

QwQ-32B 0.97 10.7 5.7 21.3 6.7

DeepSeek-V3 0.66 2.2 1.6 4.5 3.2

Testing the “short-

er-trace” hypoth-

esis. Using Equa-

tion (3.1) with a

neutral prior (↵ =

0.5), we estimate the

probability that FFS

returns a correct an-

swer, for each model

(distributions of text

lengths shown in Fig-

ure 6.2). Table 6.1 reports this probability (Pr) together with normal param-

© 2025, Indian Institute of Technology Delhi

19

eters for the trace-length distributions of correct and incorrect generations.

The two reasoning models (R1-Distill-Qwen and QwQ-32B) show high suc-

cess probabilities (92% and 97%) since their correct traces are substantially

shorter than their incorrect ones. DeepSeek-V3, a non-reasoning model, ex-

hibits a much smaller gap and a lower predicted success of 66%, mirroring

the limited empirical gains we observed for FFS on this model (Table 5.2c).

© 2025, Indian Institute of Technology Delhi

Chapter 7

Conclusion

We introduced FFS, a training-free and compute-e�cient TTS strategy. FFS

exploits the empirical observation that, in reasoning models, shorter traces

are more likely to be correct: it launches multiple stochastic decodings in par-

allel and returns the first to finish. Our theoretical analysis and experiments

on AIME24, AIME25, and GPQA Diamond with DeepSeek-R1, QwQ-32B,

R1-Distill-Qwen, and Phi-4-Reasoning-Plus show that FFS matches or sur-

passes strong baselines like MV, BS, and BF, while reducing token usage by

up to 45%. We further demonstrated that increasing the number of parallel

samples improves both accuracy and latency, giving FFS favourable scaling

properties.

Limitations and future work. FFS assumes that correct traces tend to

terminate earlier than incorrect ones. This pattern holds for the reasoning-

oriented models we study, but it is weaker for non-reasoning models such

as DeepSeek-V3, where the separation between correct and incorrect trace

lengths is small. In such settings, FFS yields limited gains and can be out-

performed by alternatives like LFS. Future work could combine FFS with

deeper or revisional decoding when model confidence is low, producing a hy-

brid system that adapts to task di�culty and mitigates the above limitation.

Overall, our results illustrate how simple inference-time strategies can un-

lock large e�ciency gains without additional training, and we hope this work

inspires further research on lightweight test-time scaling for LLM reasoning.

© 2025, Indian Institute of Technology Delhi

Chapter 8

Theoretical Results and Proofs

8.1 Short traces are more likely to be correct

Let C be the event that a randomly sampled trace is correct, while S be the

event that the trace is short, where we call a trace T short if |T |  s, for

some small length s. Let us call L = Pr(C|S)
Pr(C) the “relative lift” of C given

S, or in other words, the factor by which the probability of C increases if it

becomes known that S has occurred. We would like to show that if correct

traces are more likely to be short then L should be larger than 1.

Pr(C | S) =
Pr(S | C) · Pr(C)

Pr(S | C) · Pr(C) + Pr(S | ¬C) · Pr(¬C)

Or,

L =
Pr(C | S)

Pr(C)
=

Pr(S | C)

Pr(S | C) · Pr(C) + Pr(S | ¬C) · Pr(¬C)

=
1

Pr(C) + Pr(S|¬C)
Pr(S|C) · Pr(¬C)

But we know Pr(S|¬C)
Pr(S|C) is vanishingly small as correct traces are much more

likely to be short than incorrect ones. Hence we have,

© 2025, Indian Institute of Technology Delhi

8.2 Proof of Result 1 22

L =
1

Pr(C)

If Pr(C) is not yet saturated then we get a lift of 1
Pr(C) which is greater than

1. Notice that our assumption of correct traces being more likely to be short

relies on a appropriate definition of “shortness,” and hence a suitable value of

s. A good choice would be an s which is larger than a significant proportion

of correct trace lengths, while at the same time smaller than a major portion

of incorrect trace lengths.

8.2 Proof of Result 1

Using Bayes’ theorem:

Pr
�
T is correct | |T | = x

�
=

Pr
�
T is correct, |T | = x

�

Pr
�
T is correct, |T | = x

�
+ Pr

�
T is incorrect, |T | = x

�.

Applying the definition of conditional probability:

=
Pr
�
|T | = x | T is correct

�
· Pr

�
T is correct

�

Pr
�
|T | = x | T is correct

�
· Pr

�
T is correct

�
+ Pr

�
|T | = x | T is incorrect

�
· Pr

�
T is incorrect

�.

Letting the accuracy be ↵ = Pr[T is correct], and thus Pr(T is incorrect) =
1� ↵, we write:

=
↵ · pdfcorrect(x)

↵ · pdfcorrect(x) + (1� ↵) · pdf incorrect(x)
.

Assuming that |T | is normally distributed for both correct and incorrect
cases:

pdfcorrect(x) =
1

�1
p
2⇡

exp

"
�
1

2

✓
x� µ1

�1

◆2
#
.

pdf incorrect(x) =
1

�2
p
2⇡

exp

"
�
1

2

✓
x� µ2

�2

◆2
#
.

© 2025, Indian Institute of Technology Delhi

8.3 Proof of Result 2 23

Substituting these into our expression:

Pr
⇥
T is correct | |T | = x

⇤
=

1
�1

p
2⇡

exp


� 1

2

⇣
x�µ1
�1

⌘2�
· ↵

1
�1

p
2⇡

exp


� 1

2

⇣
x�µ1
�1

⌘2�
· ↵+ 1

�2
p
2⇡

exp


� 1

2

⇣
x�µ2
�2

⌘2�
· (1� ↵)

.

Canceling out the common
p
2⇡ and rearranging:

Pr
�
T is correct | |T | = x

�
=

1 +

1� ↵

↵
·
�1

�2
· exp

"
�
1

2

"✓
x� µ2

�2

◆2

�
✓
x� µ1

�1

◆2
##!�1

.

8.3 Proof of Result 2

Suppose Z1, Z2, . . . , Zk are i.i.d standard normal RVs. Then from extreme

value theory [6] we have:

lim
k!1

E[max{Z1, Z2, . . . , Zk}]
p
2 log k

= 1.

Or, in other words, in the limit n!1, we have

E[max{Z1, Z2, . . . , Zk}] =
p

2 log k.

It following that with Yi ⇠ N (µ, �) we have,

E
⇥
max{Y1, Y2, . . . , Zk}

⇤
= µ+ �

p
2 log k . (8.1)

For the expected minimum of the RVs, replace Yi with �Yi in the (3):

E
⇥
max{�Y1,�Y2, . . . ,�Yk}

⇤
= �µ+ �

p
2 log k,

which means

�E
⇥
min{Y1, Y2, . . . , Yk}

⇤
= �µ+ �

p
2 log k,

and therefore

© 2025, Indian Institute of Technology Delhi

8.4 Experimental Details 24

E
⇥
min{Y1, Y2, . . . , Yk}

⇤
= µ� �

p
2 log k .

8.4 Experimental Details

8.4.1 Reasoning templates

Table 8.1 and 8.2 highlights the reasoning templates to generate the reasoning

traces for AIME and GPQA examples, respectively.

Table 8.1: Reasoning template for AIME24 and AIME25 tasks.

Task Template

{problem}

Please reason step by step, and put your final answer within \boxed{}.

Table 8.2: Reasoning template for GPQA.

Task Template

What is the correct answer to this question:

{problem}

Choices:

(A) {Option 1}

(B) {Option 2}

(C) {Option 3}

(D) {Option 4}

Answer: (A), (B), (C), or (D). Choose the correct option within \boxed{}.

8.4.2 Output parsing logic

We provide the Python implementation for parsing the final response from

the reasoning traces for the AIME and GPQA datasets in Listings 1 and 2,

respectively.

© 2025, Indian Institute of Technology Delhi

8.4 Experimental Details 25

1 DIGITS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "0"]

2

3 import itertools

4 import re

5

6 def parse_output(output):

7 last = output.rfind("\\ boxed{")

8 if last == -1:

9 return "NO_ANSWER"

10 cnt = 0

11 start = last + len("\\boxed{")

12 curr = start

13 while(cnt >= 0 and curr < len(output)):

14 if (output[curr] == "{"):

15 cnt += 1

16 elif (output[curr] == "}"):

17 cnt -= 1

18 curr += 1

19 if cnt >= 0:

20 return "NO_ANSWER"

21 answer = output[start:curr -1]

22 return answer

23

24 def convert_answer_to_aime_format(trace):

25 answer = parse_output(trace)

26 length = len(answer)

27 char_is_digit = True

28 for char in answer:

29 if char not in DIGITS:

30 char_is_digit = False

31

32 if not char_is_digit or length > 3:

33 return "NO_ANSWER"

34 return "0"*(3- length) + answer

Listing 8.1: Parsing logic for traces for AIME24 and AIME25 examples.

1 pattern = r’(\\ boxed \{.*?\}) ’

2 match = re.findall(pattern , text)

3 if len(match) > 0:

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 26

4 return match [-1]

Listing 8.2: Parsing logic for traces for GPQA examples.

8.4.3 Hyperparameters

All hyperparameters for our experiments are given in Table 8.3.

Table 8.3: Decoding hyper-parameters used in all experiments. Values that
are identical across datasets are shown once.

Hyper-parameter GPQA AIME24 AIME25-
I

AIME25-
II

Max generation tokens 16K 32K 32K 32K
BF answer-reserve 3K 3K 3K 3K

Global settings (shared by every dataset)

Top-p 0.95
Temperature 0.6
Samples n (MV/LFS/FFS) 4
Beam width (Beam Search) 4

8.5 Reasoning Trace Samples

Incorrect trace of DeepSeek-R1 on AIME24 problem 5 [longer]

Problem

Let p be the least prime number for which there exists a positive integer

n such that n4 + 1 is divisible by p2. Find the least positive integer m

such that m4+1 is divisible by p2. Please reason step by step, and put

your final answer within .

Thinking

Okay, so I need to find the least prime number p such that there’s a

positive integer n where n4+1 is divisible by p2. Then, find the smallest

m where m4+1 is divisible by p2. Hmm, let me start by understanding

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 27

the problem step by step.

First, primes p where n4
⌘ �1 mod p. So, n4

⌘ �1 mod p. That

equation suggests that the order of n modulo p divides 8, because

n8
⌘ 1 mod p. Since n4

⌘ �1 mod p, squaring both sides gives

n8
⌘ 1 mod p, so the order is 8. Therefore, 8 divides p � 1 because

the multiplicative group modulo p is cyclic of order p�1. Hence, p ⌘ 1

mod 8. Wait, but is that the only possibility?

Wait, if p is an odd prime, then the multiplicative group mod p has

order p�1. So, for there to be an element of order 8, 8 must divide p�1,

so p ⌘ 1 mod 8. So primes p ⌘ 1 mod 8. But the problem says “the

least prime p”. The primes congruent to 1 mod 8 start at 17, 97, etc.

Wait, no, 17 is 1 mod 8? Let me check: 17 divided by 8 is 2 ⇤ 8 = 16,

so remainder 1. Yes, 17 ⌘ 1 mod 8. Then 97 is 12 ⇤ 8 + 1 = 97.

But hold on, maybe there are smaller primes where n4
⌘ �1 mod p?

Wait, but according to the logic above, if n4
⌘ �1 mod p, then n has

order 8 mod p, so 8 divides p� 1, so p ⌘ 1 mod 8. Therefore, primes

p ⌘ 1 mod 8. The smallest such primes are 17, 97, 113, 193, etc. Wait,

but 17 is the first prime ⌘ 1 mod 8. Then 97 is next.

But wait, the problem is not just asking for primes where n4
⌘ �1

mod p, but where p2 divides n4 + 1. So, primes p where p2 divides

n4 + 1. So, we need to find primes p such that n4
⌘ �1 mod p2.

Then, the least such prime p, and then the least m for that p.

I remember that sometimes primes that satisfy a congruence modulo

p can be lifted to modulo p2 using Hensel’s lemma, but only if certain

conditions are met. For example, if f(n) ⌘ 0 mod p and f 0(n) 6⌘ 0

mod p, then there is a unique lift to mod p2.

So, if we have n4
⌘ �1 mod p, and the derivative 4n3

6⌘ 0 mod p,

then Hensel’s lemma says we can lift n to a solution modulo p2. So, if

p 6= 2, and n is not 0 mod p, which it can’t be since n4
⌘ �1 mod p.

So, 4n3
⌘ 0 mod p would require p divides 4n3, but since p is prime

and n is not 0 mod p, p must divide 4. So, p = 2. But if p is 2, then

n4+1. Let’s check p = 2. Let’s see n = 1 : 1+1 = 2, which is divisible

by 2, but not 4. n = 3 : 81 + 1 = 82, which is 2 ⇤ 41, not divisible

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 28

by 4. So, 22 = 4 does not divide n4 + 1 for any n. Because n odd:

n4
⌘ 1 mod 4, so 1 + 1 = 2 mod 4. So 2 isn’t going to work. So, for

primes p ⌘ 1 mod 8, we can have solutions to n4
⌘ �1 mod p, and

if the derivative 4n3 is not 0 mod p, which since p ⌘ 1 mod 8, p is

at least 17, so p doesn’t divide 4, and since n 6⌘ 0 mod p, derivative

non-zero. Therefore, Hensel’s lemma applies, so solutions can be lifted

to mod p2.

Therefore, primes p ⌘ 1 mod 8 will have solutions mod p2. So, the

smallest such prime is 17.

Wait, but before assuming that, maybe check smaller primes. For

example, p = 5. Let’s see if there’s an n with n4
⌘ �1 mod 5. Let’s

compute n4 mod 5. Since 14 = 1, 24 = 16 ⌘ 1, 34 = 81 ⌘ 1, 44 =

256 ⌘ 1. So n4
⌘ 1 mod 5 for n not divisible by 5. Therefore, �1 ⌘ 4

mod 5, but n4
⌘ 1 mod 5. So no solutions. Similarly, p = 13. Let’s

check n4 mod 13. Let’s compute 14 = 1, 24 = 16 ⌘ 3, 34 = 81 ⌘

3, 44 = 256 ⌘ 9, 54 = 625 ⌘ 625� 48 ⇤ 13 = 625� 624 = 1, 64 = 1296 ⌘

1296� 99 ⇤ 13 = 1296� 1287 = 9, etc. So n4 mod 13 is 1, 3, 9. So �1

mod 13 is 12. So no n with n4
⌘ 12 mod 13. So, p = 13 is out.

Similarly, p = 17. Let’s check if there is an n with n4
⌘ �1 mod 17.

�1 mod 17 is 16. So, n4
⌘ 16 mod 17. Let’s see. Let’s compute n4

for n = 1 to 16.

14 = 1

24 = 16.

Oh, so 24 = 16 ⌘ �1 mod 17. So n = 2 is a solution. So p = 17 is

a prime where n = 2, 24 + 1 = 17, which is divisible by 17. Now, can

we check if 172 divides 24 + 1? 24 + 1 = 17, which is not divisible by

172 = 289. So, 24 + 1 = 17. So, we need to find some n where n4 + 1

is divisible by 172. So, n4
⌘ �1 mod 172. Since n = 2 is a solution

mod 17, and the derivative 4n3 = 4 ⇤ 8 = 32 ⌘ 15 mod 17, which is

not 0 mod 17. So, Hensel’s lemma tells us that there is a unique lift

mod 172. So, there exists some n ⌘ 2 mod 17 such that n4
⌘ �1

mod 172. So, the minimal solution m would be 2 + 17k for some k.

Let’s compute (2 + 17k)4 mod 172.

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 29

First, compute (2 + 17k)4. Let’s expand using the binomial theorem:

= 24 + 4 ⇤ 23 ⇤ (17k) + 6 ⇤ 22 ⇤ (17k)2 + 4 ⇤ 2 ⇤ (17k)3 + (17k)4

Modulo 172, terms with (17k)2 or higher will be multiples of 172, so

they can be ignored. Therefore, modulo 172, this is:

24 + 4 ⇤ 24 ⇤ (17k) mod 172

Compute 24 = 16.

Then, 4⇤8⇤17k = 32⇤17k. 32 ⌘ 15 mod 17, so 15⇤17k = 255k. But

255 = 15 ⇤ 17, so 255k = 15 ⇤ 17k. Thus, mod 172, 255k ⌘ 15 ⇤ 17k

mod 172. So, the entire expression is 16 + 15 ⇤ 17k mod 172.

We need this to be ⌘ �1 mod 172. Since �1 mod 172 is 289 � 1 =

288. So, 16 + 15 ⇤ 17k ⌘ 288 mod 289.

Subtract 16: 15 ⇤ 17k ⌘ 272 mod 289.

Compute 15 ⇤ 17 = 255. So, 255k ⌘ 272 mod 289.

Solve 255k ⌘ 272 mod 289.

First, note that 255 and 289: 289 is 172, and 255 = 15 ⇤ 17. So

gcd(255, 289) = 17. Let’s check if 17 divides 272. 272 divided by 17 is

16. So, 17 ⇤ 16 = 272. So, the equation is 15 ⇤ 17k ⌘ 17 ⇤ 16 mod 172.

Divide both sides by 17: 15k ⌘ 16 mod 17.

Solve 15k ⌘ 16 mod 17.15�1 mod 17. 15⇤? ⌘ 1 mod 17. 15 ⇤ 15 =

225 ⌘ 225�13⇤17 = 225�221 = 4 mod 17. 15⇤4 = 60 ⌘ 60�3⇤17 =

60 � 51 = 9 mod 17. 15 ⇤ 7 = 105 ⌘ 105 � 6 ⇤ 17 = 105 � 102 = 3

mod 17.15 ⇤ 12 = 180 ⌘ 180 � 10 ⇤ 17 = 180 � 170 = 10 mod 17.

Wait, maybe better way: 17 = 15 + 2, 15 = 2 ⇤ 7 + 1,so 1 = 15� 2 ⇤ 7

= 15� (17� 15) ⇤ 7 = 15� 7 ⇤ 17 + 7 ⇤ 15 = 8 ⇤ 15� 7 ⇤ 17. So inverse

of 15 mod 17 is 8. Therefore, 15 ⇤ 8 = 120 ⌘ 120� 7 ⇤ 17 = 120� 119

= 1 mod 17. So inverse of 15 is 8. Therefore, k ⌘ 16 ⇤ 8 = 128 ⌘

128� 7 ⇤ 17 = 128� 119 = 9 mod 17.

Therefore, k ⌘ 9 mod 17. So the minimal positive k is 9. Therefore,

n = 2 + 17 ⇤ 9 = 2 + 153 = 155.

Therefore, m = 155. But wait, let’s check if 1554 + 1 is divisible by

172 = 289.

But 155 mod 17: 17⇤9 = 153, so 155 ⌘ 2 mod 17. Then 24+1 = 17,

which is 0 mod 17, as expected. Now, to check mod 289. Let’s

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 30

compute 1554 + 1 mod 289.

But calculating 1554 is tedious. Maybe there’s a smarter way. Since

we already used Hensel’s lemma, the lift is unique, so 155 should work.

But just to confirm, perhaps compute (2 + 17 ⇤ 9)4 + 1 mod 289.

Let me compute (2 + 17 ⇤ 9)4 = (2 + 153)4 = 1554. Let’s compute 155

mod 289 is 155.

First, compute 1552 = 24025. Then 24025 mod 289. Let’s compute

how many times 289 goes into 24025.

289⇤ 80 = 23120. 24025� 23120 = 905. 289⇤ 3 = 867. 905� 867 = 38.

So, 1552 ⌘ 38 mod 289.

Then, compute 382 = 1444. 1444 mod 289. 289 ⇤ 5 = 1445. So

1444 = 1445 � 1 ⌘ �1 mod 289. Therefore, 1554 = (1552)2 ⌘ (�1)2

= 1 mod 289. Therefore, 1554+1 ⌘ 1+1 = 2 mod 289. Wait, that’s

not 0. That contradicts our earlier conclusion. Hmm, so something’s

wrong here. Where did I go wrong?

Wait, let’s retrace. So, using Hensel’s lemma, the solution should exist.

So why is 1554 + 1 ⌘ 2 mod 289? That suggests an error in the

calculation.

Wait, first, let me compute 1552. 155 ⇤ 155. Let’s compute 150 ⇤ 150 =

22500, 150 ⇤ 5 = 750, 5 ⇤ 150 = 750, 5 ⇤ 5 = 25. So, (150 + 5)2 =

1502 + 2 ⇤ 150 ⇤ 5 + 52 = 22500 + 1500 + 25 = 24025. Correct. Then

24025 divided by 289. Let’s compute 289 ⇤ 80 = 23120, as before.

24025 � 23120 = 9054. Then, 289 ⇤ 3 = 867. 905 � 867 = 38. So

1552 ⌘ 38 mod 289. Then 382 = 1444. 289 ⇤ 5 = 1445. 1444 =

1445 � 1 ⌘ �1 mod 289. Therefore, 1554 = (1552)2 ⌘ (�1)2 = 1

mod 289. Therefore, 1554 + 1 ⌘ 1 + 1 = 2 ⌘ 2 mod 289. So 2 ⌘ 2

mod 289, not 0. So this is a problem. That suggests that my earlier

reasoning was wrong.

Hmm, so why? Maybe I made a mistake in Hensel’s lemma application.

Let’s recall Hensel’s lemma. If f(n) ⌘ 0 mod p and f 0(n) 6⌘ 0 mod p,

then there exists a unique lift mod p2. Here, f(n) = n4 + 1. Then

f 0(n) = 4n3. So, for n = 2 mod 17, f 0(2) = 4⇤8 = 32 ⌘ 15 mod 17 6=

0. So, Hensel’s lemma says there is a unique solution mod 172 lifting

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 31

n ⌘ 2 mod 17. So, why does 155 not work?

Wait, maybe my calculation is wrong. Let me check 1554 + 1 again.

Alternatively, compute (2 + 17k)4 + 1 mod 289.

We had earlier that (2 + 17k)4 ⌘ 16 + 15 ⇤ 17k mod 289. So, setting

that equal to0 mod 289, we get 16 + 15 ⇤ 17k ⌘ 0 mod 289.

So 15 ⇤ 17k ⌘ �16 mod 289. Which is 255k ⌘ 273 mod 289. Wait,

earlier I thought it was 272, but �16 mod 289 is 273. Wait, yes,

289 � 16 = 273. So 255k ⌘ 273 mod 289. Then, as before, divide

both sides by 17: 15k ⌘ 273/17 mod 17. 273 divided by 17 is 16.058...

Wait, 17 ⇤ 16 = 272, so 273 = 17 ⇤ 16 + 1. So 273 = 17 ⇤ 16 + 1.

Therefore, 273/17 = 16+1/17. So, 255k ⌘ 273 mod 289 is equivalent

to 15k ⌘ 16 + 1/17 mod 17. Wait, but dividing both sides by 17 in

the congruence 255k ⌘ 273 mod 289, which is 17 ⇤ 15k ⌘ 17 ⇤ 16 + 1

mod 172. Therefore, divide both sides by 17: 15k ⌘ 16+1/17 mod 17.

Wait, but 1/17 mod 17? That doesn’t make sense. Hmm, perhaps I

made a mistake here.

Alternatively, maybe there’s a miscalculation in the earlier steps. Let’s

start over.

We have n ⌘ 2 mod 17, and we want to find k such that (2+ 17k)4 ⌘

�1 mod 289.

Compute (2 + 17k)4:

= 24 + 4 ⇤ 23 ⇤ (17k) + 6 ⇤ 22 ⇤ (17k)2 + 4 ⇤ 2 ⇤ (17k)3 + (17k)4

Modulo 289, terms with (17k)2, (17k)3, (17k)4 are multiples of 289, so

they vanish. So, we have:

24 + 4 ⇤ 23 ⇤ (17k) mod 289 = 16 + 4 ⇤ 8 ⇤ 17k

= 16 + 32 ⇤ 17k

32 ⇤ 17 = 544.

So, 16 + 544k mod 289.

But 544 mod 289 = 544�2⇤289 = 544�578 = �34. So, 544k ⌘ �34k

mod 289.

Thus, the expression is 16� 34k mod 289.

Set this equal to �1 mod 289:

16� 34k ⌘ �1 mod 289

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 32

So, �34k ⌘ �17 mod 289

Multiply both sides by �1: 34k ⌘ 17 mod 289

Divide both sides by 17 : 2k ⌘ 1 mod 17

So, 2k ⌘ 1 mod 17. Multiply both sides by inverse of 2 mod 17,

which is 9 because 2 ⇤ 9 = 18 ⌘ 1 mod 17. So, k ⌘ 9 mod 17.

Thus, k = 9+17t. The minimal positive k is 9. Thus, n = 2+17 ⇤ 9 =

155. Therefore, m = 155. But according to our previous calculation,

1554 + 1 ⌘ 2 mod 289. Which contradicts. Therefore, my error must

be in the calculation of 1554 + 1 mod 289.

Wait, let me compute 1552 again. 1552 = 24025. 24025 divided by 289:

289 ⇤ 80 = 23120

24025� 23120 = 905

289 ⇤ 3 = 867

905� 867 = 38

So 1552 ⌘ 38 mod 289. Then, 382 = 1444. 1444 divided by 289:

289 ⇤ 5 = 1445

1444 = 1445 � 1, so 382 ⌘ �1 mod 289. Therefore, 1554 = (38)2 ⌘

(�1) mod 289? Wait, no: 382 ⌘ �1 mod 289. Therefore, 1554 ⌘

(�1) mod 289. Then 1554 + 1 ⌘ �1 + 1 = 0 mod 289. Wait, but

then why did I think before that 382 = 1444 ⌘ �1 mod 289? Let’s

check 1444 mod 289.

289 ⇤ 5 = 1445. So 1444 = 1445� 1. Therefore, 1444 ⌘ �1 mod 289.

Therefore, 382 ⌘ �1 mod 289, so 1554 = (38)2 ⌘ (�1) mod 289.

Therefore, 1554 + 1 ⌘ �1 + 1 = 0 mod 289. So, 1554 + 1 is divisible

by 289. Wait, then my previous calculation was wrong. How did I get

1554 + 1 ⌘ 2 mod 289 before? Maybe miscalculation. Let me check

step by step.

1552 = 24025. 24025 divided by 289: 289⇤80 = 23120, 24025�23120 =

905. 905 divided by 289: 289 ⇤ 3 = 867, 905� 867 = 38. So 1552 ⌘ 38

mod 289. Then 382 = 1444. 1444 divided by 289 : 289 ⇤ 5 = 1445, so

1444 = 1445� 1 ⌘ �1 mod 289. So 1554 = (1552)2 ⌘ (�1) mod 289.

Therefore, 1554 + 1 ⌘ �1 + 1 = 0 mod 289. Therefore, 1554 + 1 is

divisible by 289. So my earlier assertion that 1554+1 ⌘ 2 mod 289 was

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 33

incorrect. Probably a miscalculation. Therefore, m = 155 is indeed the

minimal solution.

But wait, the problem asks for the least positive integer m such that

m4 + 1 is divisible by p2 = 172 = 289. So, if 155 is the minimal

solution, but maybe there is a smaller m. Since we have to find the

minimal m, let’s check numbers congruent to 2 mod 17 less than 155.

Because from Hensel’s lemma, the solution is unique mod 172, so

the minimal positive solution is 155. But 155 = 2 + 17 ⇤ 9. Is there

a smaller positive integer congruent to 2 mod 17 that works? For

example, 2 + 17 ⇤ 1 = 19, 2 + 17 ⇤ 2 = 36, . . . , up to 155.

Wait, but Hensel’s lemma gives a unique solution mod 172, so the

minimal positive solution is 155, but let’s verify with m = 19.

Compute194 + 1. 192 = 361. 3612 = 130321. 130321 + 1 = 130322.

Now divide by 289: 289 ⇤ 450 = 130050. 130322 � 130050 = 272. 272

is divisible by 172? 172 = 289, which is bigger than 272. So no. So,

194 + 1 ⌘ 272 mod 289 6= 0. Similarly, check m = 36. 362 = 1296,

364 = 12962 = 1679616. 1679616 + 1 = 1679617. Divide by 289:

289 ⇤ 5800 = 1676200. 1679617 �1676200 = 3417. 3417 divided by

289: 289 ⇤ 11 = 3179, 3417 � 3179 = 238. 238 is less than 289. So

364 + 1 ⌘ 238 mod 289 6= 0. So, not divisible.

Similarly, check m = 53. 532 = 2809, 534 = 28092 = 7890481.

7890481+1 = 7890482. Divide by 289: 289⇤27300 = 78900⇤289 =Wait,

maybe better to compute mod 289 directly. 53 mod 289 is 53. 532 =

2809. 2809 mod 289: 289⇤9 = 2601, 2809�2601 = 208. 2082 = 43264.

43264 mod 289. 289 ⇤ 149 = 289 ⇤ (150 � 1) = 289 ⇤ 150 � 289 =

43350 � 289 = 43061. 43264 � 43061 = 203. So 534 + 1 ⌘ 203 + 1 =

204 mod 289 6= 0. So, not divisible.

Similarly, m = 70. 70 mod 289 is 70. 702 = 4900. 4900 mod 289:

289 ⇤ 16 = 4624, 4900 � 4624 = 276. 2762 = 76176. 76176 mod 289.

289⇤263 = 289⇤ (260+3) = 289⇤260+289⇤3 = 75140+867 = 76007.

76176� 76007 = 169. So 704 + 1 ⌘ 169 + 1 = 170 mod 289 6= 0.

Continue up to m = 155. Since all smaller m ⌘ 2 mod 17 don’t work,

and Hensel’s lemma tells us 155 is the unique solution mod 289, so

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 34

155 is the minimal solution. Therefore, the answer is m = 155.

But let me check another approach. Maybe the minimal m is 2, but

24 + 1 = 17, not 289. 38: wait, 384 + 1. Wait, 382 = 1444, 14442 =

2085136. 2085136 + 1 = 2085137. Divide by 289 : 289 ⇤ 7214 =

289⇤(7000+214) = 289⇤7000+289⇤214 = 2023000+61846 = 2084846.

2085137� 2084846 = 291. 291 mod 289 = 2. So not divisible.

Alternatively, since Hensel’s lemma gives a unique solution, the mini-

mal m is 155. Therefore, the answer is 155.

But let me check in the literature. I recall that 2 is the smallest solution

mod 17, and lifting it gives155. Also, since17 is the smallest prime⌘ 1

mod 8 where n4 + 1 ⌘ 0 mod p2. Wait, but wait, maybe p = 2? But

22 = 4 divides n4+1? If n is odd, n4
⌘ 1 mod 4, so n4+1 ⌘ 2 mod 4,

so not divisible by 4. So p = 2 is invalid. Next prime, p = 17. So, the

minimal prime p is 17, and minimal m is 155.

Yes, I think that’s correct. Therefore, the answer is 155 .

Final Answer

To find the least prime p such that there exists a positive integer n

where n4 + 1 is divisible by p2, we start by noting that n4
⌘ �1

(mod p). This implies that the order of n modulo p is 8, meaning 8

must divide p � 1. Therefore, p ⌘ 1 (mod 8). The smallest prime p

satisfying this is 17.

Next, we need to find the smallest positive integer m such that m4 +1

is divisible by 172 = 289. Using Hensel’s lemma, we lift the solution

from modulo 17 to modulo 289. We start with n = 2 since 24 ⌘ �1

(mod 17).

We expand (2 + 17k)4 using the binomial theorem and consider terms

modulo 289. The relevant terms are:

(2 + 17k)4 ⌘ 24 + 4 · 23 · 17k (mod 289)

= 16 + 32 · 17k

= 16 + 544k

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 35

Since 544 modulo 289 is �34, we have:

16� 34k ⌘ �1 (mod 289)

Solving for k:

�34k ⌘ �17 (mod 289)

34k ⌘ 17 (mod 289)

2k ⌘ 1 (mod 17)

The multiplicative inverse of 2 modulo 17 is 9, so:

k ⌘ 9 (mod 17)

The smallest positive k is 9, giving m = 2 + 17 · 9 = 155.

Verification shows 1554 + 1 ⌘ 0 (mod 289), confirming m = 155.

Thus, the least positive integer m such that m4 + 1 is divisible by 172

is 155 .

Correct trace of DeepSeek-R1 on AIME24 problem 5 [shorter]

Problem

Let p be the least prime number for which there exists a positive integer

n such that n4 + 1 is divisible by p2. Find the least positive integer m

such that m4+1 is divisible by p2. Please reason step by step, and put

your final answer within .

Thinking

Okay, so I need to find the least prime number p such that there’s a

positive integer n where n4 + 1 is divisible by p squared. Then, I have

to find the smallest positive integer m where m4+1 is divisible by that

p squared. Hmm, this seems like a number theory problem involving

primes and modular arithmetic. Let me think step by step.

First, let me recall that if n4
⌘ �1 mod p2, then n8

⌘ 1 mod p2. So

the order of n modulo p2 divides 8. But since n4
⌘ �1 mod p2, the

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 36

order can’t be 1, 2, or 4 because squaring �1 gives 1, so maybe the

order is 8. Therefore, 8 divides the order of the multiplicative group

modulo p2. The multiplicative group modulo p2 has order p(p� 1). So

8 divides p(p � 1). Since p is prime, either p = 2 or p ⌘ 1 mod 8.

Wait, but 2 is a prime. Let me check p = 2 first.

If p = 2, then p2 = 4. So we need n4 + 1 ⌘ 0 mod 4. Let’s check

n = 1: 1 + 1 = 2 ⌘ 2 mod 4. Not 0. n = 2: 16 + 1 = 17 ⌘ 1 mod 4.

n = 3:81 + 1 = 82 ⌘ 2 mod 4. So no n exists such that n4 + 1 ⌘ 0

mod 4. Therefore, p = 2 is invalid. So p must be 1 mod 8. The primes

congruent to 1 mod 8 are 17, 97, etc. Wait, but maybe smaller primes.

Wait, 17 is the next prime after 2, 3, 5, 7, 11, 13. Let me check p = 5.

Wait, 5 is 5 mod 8, right? 5 mod 8 is 5. Similarly, 17 is 1 mod 8.

Wait, maybe I need to check primes where p divides n4 +1. So maybe

primes where�1 is a fourth power residue modulo p. For p ⌘ 1 mod 8,

since the multiplicative group is cyclic of order p� 1, which is divisible

by 8, so there are elements of order 8, hence x4 = �1 would have

solutions. So primes p ⌘ 1 mod 8 might be candidates. But maybe

also other primes where p ⌘ 5 mod 8? Let me think.

Wait, for primes p ⌘ 1 mod 4, �1 is a quadratic residue. For primes

p ⌘ 1 mod 8, it’s also a quartic residue. Hmm. So maybe the primes

where �1 is a fourth power residue are primes p ⌘ 1 mod 8. Let me

check that. Suppose p ⌘ 1 mod 8. Then the multiplicative group

mod p has order p� 1 ⌘ 0 mod 8, so there exists an element of order

8. Let g be such an element. Then g4 would have order 2, so g4 ⌘ �1

mod p. Therefore, x4
⌘ �1 mod p has solutions. So such primes

p ⌘ 1 mod 8 would divide n4 + 1 for some n.

But the problem is asking for primes where p2 divides n4+1. So I need

primes p where the equation x4
⌘ �1 mod p2 has solutions. So first,

p must divide n4 + 1, so p is as above, p ⌘ 1 mod 8. Then, lifting

solutions from mod p to mod p2. By Hensel’s lemma, if f(n) =

n4 + 1, and if f(n) ⌘ 0 mod p and f 0(n) ⌘ 0 mod p, then there’s

a unique solution mod p2. Wait, but Hensel’s lemma says that if

f(n) ⌘ 0 mod p and f 0(n) 6⌘ 0 mod p, then there’s a unique lift. If

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 37

f 0(n) ⌘ 0 mod p, then maybe multiple solutions or no solutions.

So first, let me suppose that p ⌘ 1 mod 8. Let’s pick the smallest such

prime, which is 17. Then check if there exists n such that n4
⌘ �1

mod 172. Alternatively, maybe check 97, but 17 is smaller.

Wait, maybe even 5? Let me check. For p = 5, does there exist n with

n4
⌘ �1 mod 25? Let’s compute n4 mod 25. Since 5 ⌘ 5 mod 8,

maybe n4
⌘ �1 mod 5is possible?

Wait, for p = 5. Let’s check n4 mod 5. The fourth powers mod 5:

04 = 0, 14 = 1, 24 = 16 ⌘ 1, 34 = 81 ⌘ 1, 44 = 256 ⌘ 1. So n4
⌘ 0 or1

mod 5. Therefore, n4
⌘ �1 mod 5 is equivalent to 1 ⌘ �1 mod 5,

which is 2 ⌘ 0 mod 5. Not possible. So p = 5 is out.

Similarly, check p = 13. 13 ⌘ 5 mod 8. So again, n4 mod 13: Let’s

compute. 14 = 1, 24 = 16 ⌘ 3, 34 = 81 ⌘ 3, 44 = 256 ⌘ 9, 54 =

625 ⌘ 625 � 48 ⇤ 13=625 � 624 = 1, 64 = 1296 ⌘ 1296 � 99 ⇤ 13 =

1296 � 1287 = 9, 74 = 2401 ⌘ 2401 � 184 ⇤ 13 = 2401 � 2392 = 9,

84 = 4096 ⌘ 4096 � 315 ⇤ 13 = 4096 � 4095 = 1, etc. So possible

residues are 1,3,9. So �1 mod 13 is 12, which is not among them.

Hence p = 13 is out.

Similarly, p = 17, which is 1 mod 8. Let’s check if there exists n with

n4
⌘ �1 mod 17. Let’s compute 4th powers mod 17.

Let’s list n from 1 to 16:

14 = 1

24 = 16

34 = 81 ⌘ 81� 4 ⇤ 17 = 81� 68 = 13

44 = 256 ⌘ 256� 15 ⇤ 17 = 256� 255 = 1

54 = 625 ⌘ 625� 36 ⇤ 17 = 625� 612 = 13

64 = 1296 ⌘ 1296� 76 ⇤ 17 = 1296� 1292 = 4

74 = 2401 ⌘ 2401� 141 ⇤ 17 = 2401� 2397 = 4

84 = 4096 ⌘ 4096� 241 ⇤ 17 = 4096� 4097 = �1 ⌘ 16 mod 17

Wait, 84 ⌘ �1 mod 17. So n = 8 satisfies n4
⌘ �1 mod 17. There-

fore, p = 17 is a candidate. Now, we need to check if there exists n

such that n4
⌘ �1 mod 172. If so, then p = 17 is the minimal prime.

Since 17 is the smallest prime ⌘ 1 mod 8, and since smaller primes

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 38

like 2,5,13 don’t work, maybe 17 is the answer. Then, we need to find

the minimal m such thatm4
⌘ �1 mod 289(172).

So first, let’s confirm that 17 is indeed the minimal prime. Next prime

after 17 is 97, which is larger, so 17 is the candidate.

So to confirm that 17 is the least prime, we have to check all primes less

than 17. The primes less than 17 are 2,3,5,7,11,13. For these primes,

as checked above, none of them have n4
⌘ �1 mod p. Except p = 17,

which does. So 17 is the least such prime.

Now, need to find the minimal m such thatm4
⌘ �1 mod 289. Let’s

use Hensel’s lemma. We know that 84 ⌘ �1 mod 17. Let’s try lifting

this solution to mod 172.

Letm = 8+17k, where k is an integer. Then computem4+1 mod 172.

First, expand (8 + 17k)4.

Using binomial theorem:

(8+17k)4 = 84+4 ⇤ 83 ⇤ (17k)+6 ⇤ 82 ⇤ (17k)2+4 ⇤ 8 ⇤ (17k)3+(17k)4.

Compute each term modulo 172 = 289.

First term:84 = 4096. We know 4096 mod 289. Let me compute

289 ⇤ 14 = 4046. 4096 � 4046 = 50. So 4096 ⌘ 50 mod 289. Then

4096 + 1 = 50 + 1 = 51 ⌘ 51 mod 289. So we need the sum of all

terms to be ⌘ 0 mod 289. So:

(8 + 17k)4 + 1 ⌘ 50 + 1 + 4 ⇤ 83 ⇤ 17k + 6 ⇤ 82 ⇤ (17k)2 + . . . mod 289.

But let me compute each term:

First term: 84 = 4096 ⌘ 50 mod 289.

Second term:4 ⇤ 83 ⇤ 17k = 4 ⇤ 512 ⇤ 17k = 2048 ⇤ 17k. 2048 mod 289:

289⇤7 = 2023, 2048�2023 = 25. So 25⇤17k = 425k. 425 mod 289 =

425� 289 = 136. So136k mod 289.

Third term:6 ⇤ 82 ⇤ (17k)2 = 6 ⇤ 64 ⇤ 289k2. Since 289k2
⌘ 0 mod 289,

this term is0 mod 289.

Fourth term:4 ⇤ 8 ⇤ (17k)3 = 32 ⇤ 4913k3. 4913 = 173, so 4913 ⌘ 0

mod 289. Hence this term is 0 mod 289.

Fifth term:(17k)4 = 174k4 = 83521k4
⌘ 0 mod 289.

So, combining all terms:

(8 + 17k)4 + 1 ⌘ 50 + 1 + 136k mod 289 ⌘ 51 + 136k mod 289.

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 39

We need this ⌘ 0 mod 289, so:

51 + 136k ⌘ 0 mod 289 =) 136k ⌘ �51 mod 289.

Let me compute �51 mod 289: 289 � 51 = 238. So 136k ⌘ 238

mod 289.

We need to solve for k: 136k ⌘ 238 mod 289.

First, note that gcd(136, 289). 289 = 172. 136 = 17 ⇤ 8. So

gcd(136, 289) = 17. Since 17 divides 136 and 289. So the equa-

tion 136k ⌘ 238 mod 289 has solutions i↵ 17 divides 238. Let’s

check:238/17 = 14. So 17 ⇤ 14 = 238. Therefore, 17 divides 238,

so solutions exist.

The equation reduces to (136/17)k ⌘ (238/17)mod(289/17): 8k ⌘ 14

mod 17.

So 8k ⌘ 14 mod 17. Multiply both sides by inverse of 8 mod 17.

8 ⇤ 2 = 16 ⌘ �1, so 8 ⇤ 15 = 120 ⌘ 120 � 7 ⇤ 17 = 120 � 119 = 1

mod 17. So inverse of 8 is 15 mod 17.

Thus, k ⌘ 14⇤15 mod 17. 14⇤15 = 210 ⌘ 210�12⇤17 = 210�204 = 6

mod 17. So k ⌘ 6 mod 17. So the solutions are k = 6+17t. Therefore,

the minimal positive k is 6.

Therefore, m = 8 + 17 ⇤ 6 = 8 + 102 = 110. Therefore, m = 110 is the

minimal positive integer such that m4 + 1 ⌘ 0 mod 289.

But wait, let me verify this. Let’s compute 1104 + 1 mod 289.

But 110 mod 17: 17 ⇤ 6 = 102, 110 � 102 = 8. So 110 ⌘ 8 mod 17.

Then 84 + 1 = 4096 + 1 = 4097. 4097 divided by 17: 17 ⇤ 241 = 4097.

Therefore, 4097 = 17 ⇤ 241. Then 241 divided by 17:17 ⇤ 14 = 238,

241 � 238 = 3. So 241 = 17 ⇤ 14 + 3. So 4097 = 172 ⇤ 14 + 17 ⇤ 3. So

4097 = 289⇤14+51. Therefore, 4097 mod 289 = 51. So 1104+1 ⌘ 51

mod 289. But we needed it to be 0. Wait, that contradicts. So what

did I do wrong?

Wait, no. Wait, m = 110. Let me compute 1104 + 1. Alternatively,

perhaps my calculation in Hensel’s lemma was wrong. Let’s go back.

Wait, when I lifted the solution from mod 17 to mod 289, I had

m = 8 + 17k. Then expanding (8 + 17k)4:

I calculated up to the linear term. The first term was 84 = 4096 ⌘ 50

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 40

mod 289. Then the linear term was 4 ⇤ 83 ⇤ 17k = 4 ⇤ 512 ⇤ 17k =

2048 ⇤ 17k. But 2048 mod 289: 289 ⇤ 7 = 2023, 2048 � 2023 = 25.

So 25 ⇤ 17k = 425k. Then 425 mod 289 = 425� 289 = 136. So 136k

mod 289. Then total sum was 50 + 1 + 136k. Wait, but 84 + 1 =

4096 + 1 = 4097 ⌘ 4097 mod 289. 4097 divided by 289: 289 ⇤ 14 =

4046, 4097 � 4046 = 51. So 84 + 1 ⌘ 51 mod 289. Then the linear

term is 136k. So (8 + 17k)4 + 1 ⌘ 51 + 136k mod 289. So to get this

⌘ 0 mod 289, 136k ⌘ �51 mod 289. But �51 mod 289 is 238. So

136k ⌘ 238 mod 289.

As gcd(136, 289) = 17, which divides 238, so solutions exist. Dividing

equation by 17: 8k ⌘ 14 mod 17. Then inverse of 8 mod 17 is 15,

so k ⌘ 14 ⇤ 15 = 210 ⌘ 6 mod 17. Sok = 6 + 17t. So minimal

k = 6. Then m = 8 + 17 ⇤ 6 = 8 + 102 = 110. Then why does

1104 + 1 ⌘ 51 + 136 ⇤ 6 = 51 + 816 mod 289. 816 divided by 289:

289 ⇤ 2 = 578, 816 � 578 = 238. So 51 + 238 = 289 ⌘ 0 mod 289.

Ah! So 51 + 816 = 867. 867 divided by 289 = 3 ⇤ 289 = 867. So

867 ⌘ 0 mod 289. So 1104 + 1 ⌘ 0 mod 289. Therefore, m=110 is

indeed the solution. My initial confusion was due to miscalculating

1104 + 1 directly, but since 110 ⌘ 8 mod 17, but in mod 289, the

higher power terms do matter. So the calculation via Hensel’s lemma

was correct. Therefore, the minimal m is 110.

But let me check if there’s a smaller m. Suppose we take k = 6� 17 =

�11. Then m = 8+17 ⇤ (�11) = 8� 187 = �179 ⌘ 110 mod 289. So

negative solution corresponds to positive one. So the minimal positive

solution is 110.

Therefore, the answer is p = 17, m = 110. Wait, but the problem says

”Find the least positive integer m such that m4 +1 is divisible by p2.”

Since p = 17, then m = 110.

But before finalizing, let me check m = 110: compute 1104+1 divided

by 172 = 289. 1104 = 146410000. 146410000 + 1 = 146410001. Divide

by 289: Let’s see 289⇤ 500000 = 144500000. 146410001� 144500000 =

1910001. 289 ⇤ 6000 = 1734000. 1910001 � 1734000 = 176001. 289 ⇤

600 = 173400. 176001 � 173400 = 2601. 289 ⇤ 9 = 2601. So total is

© 2025, Indian Institute of Technology Delhi

8.5 Reasoning Trace Samples 41

500000+ 6000+ 600+ 9 = 506609. So 289 ⇤ 506609 = 146410001. Yes,

so 1104 + 1 = 289 ⇤ 506609, so divisible by 289. Therefore, m = 110 is

correct.

But wait, maybe there’s a smaller m? Let me check m = 110� 289 =

�179, which is not positive. The next lower positive would be m =

110� 289 ⇤ 0 = 110, which is the minimal positive solution. Therefore,

the minimal positive integer m is 110.

Therefore, the answer is 110 .

Final Answer

To find the least prime number p such that there exists a positive

integer n where n4+1 is divisible by p2, we start by considering primes

p where �1 is a fourth power residue modulo p. These primes are

congruent to 1 mod 8. The smallest such prime is 17.

Next, we need to verify if there exists an integer n such that n4+1 ⌘ 0

mod 172. We know that 84 ⌘ �1 mod 17. Using Hensel’s lemma, we

lift this solution modulo 172.

Letm = 8+17k. Expanding (8+17k)4 modulo 289 (which is 172) using

the binomial theorem, we find the linear term coe�cient and solve for

k:

(8 + 17k)4 + 1 ⌘ 51 + 136k mod 289

We need 51 + 136k ⌘ 0 mod 289. Solving 136k ⌘ �51 mod 289,

we find k ⌘ 6 mod 17. Thus, the smallest positive k is 6, leading to

m = 8 + 17 · 6 = 110.

Verification shows 1104 + 1 is indeed divisible by 289. Therefore, the

least positive integer m such that m4 + 1 is divisible by 172 is 110 .

© 2025, Indian Institute of Technology Delhi

Bibliography

[1] Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachan-

dran, Harkirat Behl, Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar,

Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning technical report.

arXiv preprint arXiv:2504.21318, 2025.

[2] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a

reasoning model thinks with reinforcement learning. arXiv preprint

arXiv:2503.04697, 2025.

[3] Dibyanayan Bandyopadhyay, Soham Bhattacharjee, and Asif Ekbal.

Thinking machines: A survey of llm based reasoning strategies. arXiv

preprint arXiv:2503.10814, 2025.

[4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V

Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys:

Scaling inference compute with repeated sampling. arXiv preprint

arXiv:2407.21787, 2024.

[5] Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai,

Sridhar Thiagarajan, Craig Boutilier, Rishabh Agarwal, Aviral Kumar,

and Aleksandra Faust. Inference-aware fine-tuning for best-of-n sam-

pling in large language models. arXiv preprint arXiv:2412.15287, 2024.

[6] Janos Galambos. The asymptotic theory of extreme order statistics.

The Theory and Applications of Reliability with Emphasis on Bayesian

and Nonparametric Methods, pages 151–164, 1977.

[7] Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng,

Archit Sharma, and Noah D Goodman. Stream of search (sos): Learning

to search in language. arXiv preprint arXiv:2404.03683, 2024.

[8] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,

Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al.

Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-

ment learning. arXiv preprint arXiv:2501.12948, 2025.

© 2025, Indian Institute of Technology Delhi

BIBLIOGRAPHY 43

[9] Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao,

Juanzi Li, Jie Tang, and Yuxiao Dong. Advancing language model rea-

soning through reinforcement learning and inference scaling, 2025. URL

https://arxiv. org/abs/2501, 11651.

[10] Zhen Huang, Zengzhi Wang, Shijie Xia, and Pengfei Liu. Olympicarena

medal ranks: Who is the most intelligent ai so far? arXiv preprint

arXiv:2406.16772, 2024.

[11] Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet

Baluja, Dale Schuurmans, and Xinyun Chen. Evolving deeper llm think-

ing. arXiv preprint arXiv:2501.09891, 2025.

[12] Noam Levi. A simple model of inference scaling laws. arXiv preprint

arXiv:2410.16377, 2024.

[13] Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt

Keutzer, Jiarong Xing, Joseph E Gonzalez, and Ion Stoica. S*: Test time

scaling for code generation. arXiv preprint arXiv:2502.14382, 2025.

[14] Yanyang Li, Michael Lyu, and Liwei Wang. Learning to reason from

feedback at test-time. arXiv preprint arXiv:2502.15771, 2025.

[15] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang,

Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang,

Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning

large language models. arXiv preprint arXiv:2502.17419, 2025.

[16] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda

Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al.

Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[17] Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Han-

naneh Hajishirzi, and Asli Celikyilmaz. Don’t throw away your value

model! generating more preferable text with value-guided monte-carlo

tree search decoding. arXiv preprint arXiv:2309.15028, 2023.

© 2025, Indian Institute of Technology Delhi

BIBLIOGRAPHY 44

[18] MAA Committee. Aime problems and solutions. https:

//artofproblemsolving.com/wiki/index.php/AIME_Problems_

and_Solutions, 2025. Accessed: 2025-05-06.

[19] Niklas Muennigho↵, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-

Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel

Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. arXiv

preprint arXiv:2501.19393, 2025.

[20] OpenAI. Learning to reason with llms. https://openai.com/

research/learning-to-reason-with-llms, 2024. Accessed: 2025-05-

06.

[21] Jianfeng Pan, Senyou Deng, and Shaomang Huang. Coat: Chain-of-

associated-thoughts framework for enhancing large language models rea-

soning. arXiv preprint arXiv:2502.02390, 2025.

[22] Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and

Juanzi Li. Agentic reward modeling: Integrating human preferences

with verifiable correctness signals for reliable reward systems. arXiv

preprint arXiv:2502.19328, 2025.

[23] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty,

Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R

Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In

First Conference on Language Modeling, 2024.

[24] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm

test-time compute optimally can be more e↵ective than scaling model

parameters. arXiv preprint arXiv:2408.03314, 2024.

[25] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning,

March 2025.

[26] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju,

Qing Sun, Stefan Lee, David Crandall, and Dhruv Batra. Diverse beam

search: Decoding diverse solutions from neural sequence models. arXiv

preprint arXiv:1610.02424, 2016.

© 2025, Indian Institute of Technology Delhi

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms

BIBLIOGRAPHY 45

[27] Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He,

Linfeng Song, Dian Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are

all over the place: On the underthinking of o1-like llms. arXiv preprint

arXiv:2501.18585, 2025.

[28] Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu,

Jiaoyang Li, and Guillaume Sartoretti. Mcts-judge: Test-time scal-

ing in llm-as-a-judge for code correctness evaluation. arXiv preprint

arXiv:2502.12468, 2025.

[29] Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf,

Alex Xie, Graham Neubig, Ilia Kulikov, and Zaid Harchaoui. From de-

coding to meta-generation: Inference-time algorithms for large language

models. arXiv preprint arXiv:2406.16838, 2024.

[30] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang.

An empirical analysis of compute-optimal inference for problem-solving

with language models. 2024.

[31] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P

Lillicrap, Kenji Kawaguchi, and Michael Shieh. Monte carlo tree

search boosts reasoning via iterative preference learning. arXiv preprint

arXiv:2405.00451, 2024.

[32] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui,

Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie

Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Hao-

ran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei

Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang

Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li,

Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,

Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wen-

biao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren,

Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong

Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan

Qiu. Qwen3 technical report, 2025.

© 2025, Indian Institute of Technology Delhi

BIBLIOGRAPHY 46

[33] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan

Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,

Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin

Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,

Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xu-

ancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong

Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.

arXiv preprint arXiv:2412.15115, 2024.

[34] Xiao-Wen Yang, Xuan-Yi Zhu, Wen-Da Wei, Ding-Chu Zhang, Jie-Jing

Shao, Zhi Zhou, Lan-Zhe Guo, and Yu-Feng Li. Step back to leap

forward: Self-backtracking for boosting reasoning of language models.

arXiv preprint arXiv:2502.04404, 2025.

[35] Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan

Guo, Yufei Wang, Irwin King, Xue Liu, and Chen Ma. What, how,

where, and how well? a survey on test-time scaling in large language

models. arXiv preprint arXiv:2503.24235, 2025.

[36] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B

Tenenbaum, and Chuang Gan. Planning with large language models for

code generation. arXiv preprint arXiv:2303.05510, 2023.

© 2025, Indian Institute of Technology Delhi

	Introduction
	Related Work
	FFS: Our Proposed Method
	Experimental Setup
	Results
	Analysis
	Conclusion
	Theoretical Results and Proofs
	Short traces are more likely to be correct
	Proof of Result 1
	Proof of Result 2
	Experimental Details
	Reasoning templates
	Output parsing logic
	Hyperparameters

	Reasoning Trace Samples

	Bibliography

