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Abstract

Fine-tuning large language models (LLMs)
on downstream tasks requires substan-
tial computational resources. A class of
parameter-efficient fine-tuning (PEFT) aims
to mitigate these computational challenges
by selectively fine-tuning only a small frac-
tion of the model parameters. Although
computationally efficient, these techniques
often fail to match the performance of fully
fine-tuned models, primarily due to inherent
biases introduced during parameter selec-
tion. Traditional selective PEFT techniques
use a fixed set of parameters based on a pre-
defined budget (a process also known as un-
masking), failing to capture parameter im-
portance dynamically and often ending up
exceeding the budget. We introduce ID3, a
novel selective PEFT method that calculates
parameter importance continually and dy-
namically unmasks parameters by balanc-
ing exploration and exploitation in param-
eter selection. Our empirical study on 15
tasks spanning natural language understand-
ing and generative tasks demonstrates the
effectiveness of our method compared to
fixed-masking-based PEFT techniques. We
analytically show that ID3 reduces the num-
ber of gradient updates by a factor of two,
enhancing computational efficiency. ID3 is
robust to random initialization of neurons
and, therefore, can be seamlessly integrated
into existing additive and reparametrization-
based PEFT modules such as adapters and
LoRA for dynamic sparsification.1

1 Introduction

Pre-trained large language models (Devlin et al.,
2018; Liu et al., 2019; Raffel et al., 2020; Brown
et al., 2020; Touvron et al., 2023) have demon-
strated remarkable capabilities in understanding

*Equal contribution
1Code is available at https://github.com/

Aradhye2002/selective-peft-toolkit

and generating natural language. To adapt these
models for downstream tasks, fine-tuning on task-
specific datasets is essential in order for the mod-
els to acquire specialized knowledge relevant to
particular tasks and domains. Larger pre-trained
models, such as GPT-3 (Brown et al., 2020)
and Llama (Touvron et al., 2023), exhibit even
more advanced language understanding and rea-
soning skills, which enable them to leverage emer-
gent capabilities (Radford et al., 2019) like in-
context learning (ICL). This ability allows these
models to quickly adapt to new tasks without
needing gradient-based training. However, re-
cent research (Liu et al., 2022) indicates that, de-
spite its practical advantages, ICL is often less
efficient than fine-tuning in terms of computa-
tional cost and downstream performance. Con-
sequently, parameter-efficient fine-tuning has be-
come increasingly important for effectively adapt-
ing large pre-trained models to specific tasks.

Parameter-efficient fine-tuning (PEFT) aims to
increase the memory and computational efficiency
of model fine-tuning by performing low-rank or
sparse updates instead of dense updates, as is typ-
ical in the case of full fine-tuning (FFT). Addi-
tive PEFT methods (Houlsby et al., 2019; Pfeif-
fer et al., 2020) introduce additional trainable pa-
rameters to the frozen pre-trained model, whereas
reparametrization-based PEFT techniques (Hu
et al., 2021; He et al., 2022) utilize low-rank rep-
resentations of existing model parameters to re-
duce the number of trainable parameters. Selec-
tive methods (Liao et al., 2023; Sung et al., 2021;
Zaken et al., 2021), another class of PEFT tech-
niques, use different heuristics to select the pa-
rameters within the pre-trained models for fine-
tuning. The heuristic function assigns positive
real-valued importance to each parameter in the
model, while a suitable selection strategy deter-
mines which parameters to retain for fine-tuning.
For instance, Diff Pruning (Guo et al., 2020) uses
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change in parameter magnitude to assess the pa-
rameter importance, whereas, Fish mask (Sung
et al., 2021) uses gradient-based Fisher impor-
tance heuristic function. A majority of these selec-
tive PEFT techniques identify and fine-tune only
a static set of top-B parameters (aka ‘budget’)
from the entire parameter pool, with a fixed and
predefined budget B. Incorrect allocation of this
budget can detrimentally impact the model’s fine-
tuning performance due to the misselection of pa-
rameters, either by including non-essential ones
or excluding critical ones. The parameter selec-
tion strategies for these PEFT techniques can be
broadly classified into two classes – static (static-
S) and repeated (repeat-S). These classes utilize
two extreme cases of exploration and exploita-
tion of parameters with static-S as exploitation-
only (i.e., reuse same parameters), while repeat-S
as exploration-only (i.e., always choose new pa-
rameters). A majority of the existing selective
PEFT methods use static-S selection, and these
exploitation-only methods often fail to select the
optimal parameters for a given task and instead
reuse possibly redundant features. On the other
hand, repeat-S-based PEFT methods often over-
shoot the target budget and perform well only for
very small budgets. Selective PEFT methods like
Diff Pruning and Fish Mask often use masking
matrices but fail to utilize their sparsity, leading
to computational costs akin to full fine-tuning.

To address these issues, we introduce a novel se-
lection strategy increment-S , which balances the
exploration and exploitation strategies adopted in
repeat-S and static-S. We analytically show that
incremental parameter selection is computation-
ally more efficient and also practically beneficial
as it provides fine-grained control over the bud-
get, unlike existing methods. Moreover, we ex-
perimentally show that despite performing half the
number of gradient updates, the performance with
increment-S exceeds existing baselines. We also
propose a new Dynamic magnituDe and graDient-
based heuristic (aka D3), which combines the ben-
efits of magnitude and gradient-based parame-
ter importance heuristics. Our proposed method,
which we call increment-D3 (aka ID3), can be eas-
ily integrated into any neural module and spar-
sify additive and reparameterized modules of pre-
trained models. Existing static-S PEFT tech-
niques do not exhibit this property, as they fail to
assess parameter importance for randomly initial-
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Figure 1: Comparison of different selective PEFT
methods – Full fine-tuning (Full FT), Random
masking (R-Mask), Fish (Sung et al., 2021), Bit-
Fit (Zaken et al., 2021), PaFi (Liao et al., 2023)
and ID3 on GLUE benchmark. Marker size de-
notes the number of trainable parameters. Detailed
results are reported in Table 1.

ized untrained parameters.
We evaluate the effectiveness of various se-

lective PEFT methods on the GLUE bench-
mark (Wang et al., 2018) comprising eight nat-
ural language understanding tasks. For a bud-
get of 103K, ID3 outperforms the other selective
PEFT baselines by a wide margin of 1.2% with the
pre-trained DeBERTa-v3 (He et al., 2021b) back-
bone. With only 0.17% of trainable parameters,
ID3 beats the fully fine-tuned DeBERTa-v3 model
with a margin of 0.3% across all GLUE tasks (c.f.
Figure 1). We further explore ID3 with LoRA (Hu
et al., 2021) on a pre-trained Llama-7b (Touvron
et al., 2023) backbone model on six mathematical
reasoning tasks. With 94% sparsity, ID3 achieves
0.5% better accuracy on mathematical reasoning
tasks than LoRA, emphasizing the usefulness of
ID3 on untrained (randomly initialized) compo-
nents.

Our major contributions are listed below:
(1) We introduce a novel selective strategy,

increment-S , for parameter-efficient fine-
tuning, which enables incremental parameter
selection and dynamic assessment of parame-
ter importance.

(2) We propose a new importance-based heuristic,
D3, that combines the benefits of gradient and
magnitude-based parameter importance func-
tions. Together with increment-S strategy, our
proposed selective PEFT method ID3 demon-
strates a strong performance on various nat-



ural language understanding and generation
tasks, even with highly sparse parameter up-
dation.

(3) Our method produces a series of progressively
improved models across various budget levels,
allowing users to balance budget and perfor-
mance effectively.

(4) We provide an open-source toolkit integrating
four selective PEFT techniques, offering com-
prehensive support for selective methods that
is not available in existing toolkits.

2 Related Work

This section highlights the representative works in
three broad categories of PEFT strategies – addi-
tive, reparameterized and selective.

Additive PEFT methods, such as
Adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020), add additional neural components to the
pre-trained models. Due to their additive nature,
these methodologies usually offer flexibility in
multi-task fine-tuning setups, where the same
pre-trained model is used with different task-
specific adapters. The earliest adapter technique
proposed by (Houlsby et al., 2019) utilized the
additive component in feed-forward networks of
self-attention (Vaswani et al., 2017). Subsequent
additive PEFT methods (He et al., 2021a; Li
and Liang, 2021; Zhu et al., 2021) differ in
terms of placement of these additive components.
The reparameterization-based PEFT techniques
such as LoRA (Hu et al., 2021) use a low-rank
approximation of the parameter update matrix
∆W = BA to reduce the effective number
of trainable parameters. Meanwhile, LoRA
applies a uniform rank across all incremental
parameters, assuming that all parameter matrices
are equally important. To address this limitation,
AdaLoRA (Zhang et al., 2023b) dynamically
allocates the parameter budget among the ad-
ditional weight matrices with singular value
decomposition of the ∆W and importance-aware
rank allocation. IncreLoRA (Zhang et al., 2023a)
proposed an incremental parameter allocation
method that computes the importance scores
of each module and adaptively adds the most
important components to the trainable parameters.

Selective parameter-efficient fine-tuning strate-
gies generate a sparse mask M ∈ {0, 1}|W |

corresponding to each weight matrix W in
the pre-trained model. Unlike additive and

reparametrization-based techniques, selective
methods consider the importance of individual
parameters instead of the entire component. In
this context, BitFit (Zaken et al., 2021) selectively
trains the bias terms within each model unit. In
contrast, Diff pruning (Guo et al., 2020) evaluates
the absolute parameter changes across successive
training phases, pruning those with the smallest
magnitude. The computation of the magnitude
of change of parameters requires significant
computational and storage costs, equivalent to full
fine-tuning of the model. To alleviate these com-
putational burdens, Sung et al. (2021) proposed
Fish Mask that computes fixed sparse masks with
an empirical Fisher importance matrix. To avoid
the computation cost of the parameter importance,
Liao et al. (2023) proposed PaFi, which assesses
the significance based on the absolute magnitude
of the parameters and prunes the unimportant
ones. Unlike earlier methods that modify the
pre-trained model directly, He et al. (2022)
proposed SparseAdapter, a novel approach that
merges with existing adapter-based techniques to
sparsify a fine-tuned adapter model, enhancing
the efficiency of PEFT.

Our proposed ID3 method distinguishes itself
from current selective PEFT methods by progres-
sively selecting the parameters throughout fine-
tuning steps, thereby capturing the change in pa-
rameter importance during training process. Addi-
tionally this will allow us to choose model check-
points with incremental budgets, which is not pos-
sible in current methods. Furthermore, ID3 lever-
ages the magnitude and gradient of parameters,
where the latter can be efficiently computed using
any standard automatic differentiation tool (Bay-
din et al., 2018), thus avoiding extra computational
delays.

3 Methodology

Motivated by the key challenges of the exist-
ing budget-driven selective PEFT methodologies,
highlighted in Sections 1 and 2, we propose ID3,
an iterative approach for calculating the parame-
ter importance and incrementally selecting the top
parameters for each training iteration. Figure 2 il-
lustrates the workings of ID3. In this work, we
introduce the terms scalar parameter and tensor
parameter, where we refer to individual entries
in the weight matrices as scalar parameters and
the whole weight matrix as the tensor parameter.



Figure 2: B (Budget) = 3, T (Total training steps)
= 3 (Top): Static-S strategy where B number of
parameters are chosen initially and used in all fu-
ture training steps. (Middle): Repeat-S where
B number of fresh parameters are chosen accord-
ing to the heuristic at each training step. (Bot-
tom): Increment-S where k (= B/T ) parameters
are chosen at each training step according to the
heuristic and added to the selected pool.

For instance, a tensor parameter in a BERT (De-
vlin et al., 2018) model can be the query matrix of
an attention head. The query matrix has d2

n scalar
parameters where d is the hidden dimension, and
n is the number of attention heads. We also for-
mulate a common selective PEFT method as a
heuristic function combined with a selection strat-
egy. We identify three common selection strate-
gies – (1) static-S, where the initial set of selected
parameters according to the heuristic are reused
throughout training, (2) repeat-S, where we use
the heuristic repeatedly at each training step to find
a (potentially) new selected set, and (3) increment-
S where we accumulate the selected set over the
training iterations. These selection strategies are
illustrated in Figure 2. Existing selective PEFT
methods use static-S, and ID3 uses increment-S.
We provide results for repeat-S as baselines for
comparison.

3.1 Determining Scalar Importance

Evaluating the scalar importance (i.e. impor-
tance of scalar parameters) of a neural network
has always been a pivotal step in model prun-
ing (Molchanov et al., 2019; Cheng et al., 2023).
For a given neural model, parameterized with θ,
we calculate an importance function f : R2 →
[0,∞] that measures a real-valued importance for

each parameter given its value θi and the gradi-
ent, ∇θi . Formally, we define the parameter im-
portance function (also referred to as the heuristic
function):

H(θi) = |∇θi |
(|θi|+ ϵ)exp

, (1)

where ϵ ∈ (0,∞] and exp ∈ [−∞,∞] are hyper-
parameters to control the smoothing of the func-
tion and the effect of parameter magnitude on the
final importance, respectively. The following the-
orem provides the mathematical justification be-
hind the heuristic function.
Definition 1. Given the output distribution
of y ∼ pθ(·|x), where pθ(y|x) = f(x, y; θ),
for a given input x and a model parame-
ter θ, the Fisher information matrix I(θ) is

the variance Ex,y

[(
∂
∂θ log f(x, y; θ)

)2∣∣∣θ] −
Ex,y

[(
∂
∂θ log f(x, y; θ)

)∣∣∣θ]2.

Fisher information measures the amount of
information the random variable x carries about
the unknown model parameter θ and is widely
used to assess the model parameter importance.

Theorem 1. For ϵ ≥ 1,
√
I(θ) is the upper bound

of Ex,y

[
H(θ)

]
.

Proof of Theorem 1. First, we show that
Ex,y

[(
∂
∂θ log f(x, y; θ)

)∣∣∣θ] = 0.

Ex,y

[( ∂

∂θ
log f(x, y; θ)

)∣∣∣θ]
=

∫
x

∫
y

∂
∂θf(x, y; θ)

f(x; θ)
f(x, y; θ)dx

=
∂

∂θ

∫
x

∫
y
f(x, y; θ)dx =

∂

∂θ
· 1 = 0

Therefore,

I(θ) = Ex,y

[( ∂

∂θ
log f(x, y; θ)

)2∣∣∣θ]
Ex,y

[
H(θ)

]
=

1

(|θ|+ ϵ)exp
Ex,y

[∣∣∣ ∂
∂θ

log f(x, y; θ)
∣∣∣]

Using Jensen’s inequality, we get,

I(θ) = Ex,y

[∣∣∣ ∂
∂θ

log f(x, y; θ)
∣∣∣2]

≥
(
Ex,y

[∣∣∣ ∂
∂θ

log f(x, y; θ)
∣∣∣])2

=
(
Ex,y

[
H(θ)

])2
· (|θ|+ ϵ)2·exp



Hence, for ϵ ≥ 1, I(θ) ≥
(
Ex,y

[
H(θ)

])2
.

Therefore, Theorem 1 justifies that parameters
with maximum H(θi) have maximum Fisher im-
portance.

Algorithm 1 Incremental Parameter Updation

Require: Unmasking scheduler {ut}Tt=1, number of
training steps T , trainable model θ(0), training
dataset (X,Y ), learning rate η
t← 0
Λ0 ← ϕ
while t < T do

(x, y) ∼ (X,Y ) minibatch
Compute predicted output ŷ = pθ(t)(·|x)
Compute loss l = L (y, ŷ)
Compute gradient∇θ(t) = ∇θ(t) l
Compute parameter importance H for parame-

ters in θ(t) \ Λt using Equation 1
Find scalar parameters λt using Equation 2
Λt+1 ← Λt ∪ λt

Update parameter gradients ∇̃θ(t) using Equa-
tion 3

Perform parameter update θ(t+1) ← θ(t) +

η∇̃θ(t)

t← t+ 1
end while

3.2 Incremental Parameter Updation

Suppose we want to fine-tune a pre-trained model
parameterized by θ(0) (0 denotes the fine-tuning
timestep), with |θ(0)| = N on a task for maximum
T number of steps. Suppose we fix the budget of
fine-tuning as B, i.e., we only fine-tune a maxi-
mum of B number of scalar parameters in the en-
tire model training. The factor B

N is called spar-
sity of the model. We choose a suitable unmasking
scheduler {ut}Tt=1 that estimates the number of pa-
rameters to be updated in each iteration t. By de-
fault, we use a uniform scheduler where ut =

B
T .

At the beginning of model fine-tuning, the un-
masked parameters Λt = ϕ. At each training it-
eration t, we measure the importance for each pa-
rameter in the set θ(t−1) \ Λt−1 using Equation 1
and determine the incremental unmasked parame-
ters Λt such that

max
λt

min{H(θi)}θi∈λt
s.t.|λt| = ut (2)

Finally, the set of unmasked parameters is up-
dated as Λt = Λt−1 ∪ λt. During the for-
ward pass, we compute the task-specific loss
L
(
y, pθ(t)(y|x)

)
. The gradients ∇θ(t) are set to

Pointers Values
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-1 1 -2 2

-3 3 -4 4

-5 5 -6 6
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Figure 3: Bottom left: A tensor parameter in the
base pre-trained model, Top left: Table of pointers
and values of the updated scalar parameters after
back-propagation, Right: Updated model param-
eter after back-propagation.

zeros, for parameters not in the unmask set Λt to
obtain ∇̃θt . Formally,

∇̃θi
t
=

{
∇θi

t
, if θit ∈ Λt

0 otherwise
(3)

Finally, the parameters are updated with back-
propagation using the updated gradients ∇̃θ(t) . Al-
gorithm 1 formalizes the ID3 incremental param-
eter updation algorithm.

With the incremental parameter selection and
update, the total number of parameter updates can
be calculated as

Udynamic =
T−1∑
t=0

t∑
i=0

ut

For uniform unmasking scheduler,

Udynamic =

T−1∑
t=0

t∑
i=0

B

T
=

T + 1

2
B

For static-masking-based PEFT techniques, the to-
tal number of parameter updates is

Ustatic =
T∑
t=0

B = T ·B

Hence, Udynamic = Ustatic
2 (when T >> 1).

Therefore, the incremental selection can reduce
the effective number of gradient updates by a fac-
tor of 2.

3.3 Efficient Processing of Sparse Masks

Storing and loading the sparse masks requires ef-
ficient handling of the masked scalar parameters.



For storing the sparse weights, we store only the
weights of the unmasked scalar parameters and
their corresponding pointers. Since the maximum
dimension of any tensor does not typically ex-
ceed 2, we need to store at most two indices for
any given scalar parameter. These indices can be
stored using a 32-bit unsigned integer. Each up-
dated model parameter can be stored using 64-
bit double floating point numbers. Therefore, we
can reduce the space complexity of the masks to
O(2 × 32 × B + 64 × B) = O(B). While load-
ing, we can use these pointers (stored in the form
of tensors) to index into the tensor parameters and
replace the pretrained ones with the stored ones
which were learn during selective fine-tuning. Fig-
ure 3 summarizes the process of handling sparse
masks.

4 Experimental Setup

4.1 Datasets and Tasks

To evaluate the effectiveness of our proposed
method, we conduct exhaustive experiments
across three distinct tasks: text classification, to-
ken classification, and text generation.

For text classification, we use eight tasks
from the GLUE benchmark (Wang et al., 2018):
CoLA, MRPC, RTE, STS-B, SST-2, MNLI-
m/mm, QNLI, and QQP. In line with previous
studies (Liao et al., 2023; Sung et al., 2021; Za-
ken et al., 2021), we exclude the WNLI task due
to its poor performance with pre-trained language
models. On token classification, we experiment
with the named entity recognition (NER) task us-
ing the CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003). For these nine tasks, we fine-
tune the model using the training splits and evalu-
ate its performance on the validation splits.

We consider six generative arithmetic reasoning
tasks for text generation: GSM8K, SVAMP, Mul-
tiArith, AddSub, AQuA, and SingleEq. We fine-
tune our models on the Math10K dataset, as cu-
rated by Hu et al. (2023), and evaluate them on the
test splits of the datasets above. Detailed descrip-
tions of these datasets and tasks are provided in
Section 8.1 and Table 6 of Appendix.

4.2 Models

For NLU and NER tasks, we use the pre-trained
encoder-only DeBERTa-v3-base (He et al.,
2021b) and RoBERTa-base (Liu et al., 2019) mod-
els as the backbone. For generative tasks, we use

the pre-trained Llama-7b (Touvron et al., 2023)
model. All the pre-trained model weights are ob-
tained from Huggingface (Wolf et al., 2020).

4.3 Toolkit Implementation

A significant contribution of our work is the im-
plementation of the selective-peft-toolkit2. We use
PyTorch (Paszke et al., 2019) and the Hugging-
face Transformers library (Wolf et al., 2020) for
implementing the toolkit. We implement the fol-
lowing selective PEFT baselines in our toolkit:
(1) BitFit (Zaken et al., 2021) involves fine-tuning
only the bias terms in a pre-trained model; (2)
PaFi (Liao et al., 2023) selects the pre-trained pa-
rameters with the smallest magnitude and trains
only these parameters during fine-tuning; (3) ID3.

The toolkit allows integration of these selective
PEFT methods into the original pre-trained mod-
els as well as into any additional neural modules
such as Adapters (Houlsby et al., 2019; Pfeiffer
et al., 2020) and LoRA (Hu et al., 2021). We also
provide methods for storing and loading the sparse
weights memory-efficiently, enabling end-to-end
training and evaluation workflows.

Hyperparameters. Batch size, learning rates
and other PEFT method-specific hyper-parameters
are provided in Section 8.2 and Table 7a and Ta-
ble 7b of Appendix. All the models are trained on
Nvidia A100 and A6000 GPUs.

5 Results

5.1 Text Classification

We report the results on GLUE tasks in Table 1.
ID3 achieves an average score of 89.15% with a
budget of 320K, surpassing the best-performing
baseline (Fish) by over 1% and even outperform-
ing the FFT baseline (88.86%). A similar com-
parison holds at smaller budget levels, with ID3

outperforming other selective baselines by >1%.
We further evaluate the effectiveness of ID3

with other adapters integrated with pre-trained
language models. Table 2 reports the performance
of the DeBERTa-v3 model with rank 8 (indicated
by r=8) LoRA adapter, with and without ID3.
With a budget of 320K (sparsity 76%), ID3 out-
performs full LoRA fine-tuning by a margin of
0.17%. Interestingly, LoRA sparsified with both
ID3 and PaFi beats the dense LoRA model on

2https://github.com/Aradhye2002/
selective-peft-toolkit

https://github.com/Aradhye2002/selective-peft-toolkit
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Budget Method MNLI-m MNLI-mm QQP QNLI SST-2 STS-B CoLA MRPC RTE Avg

184M Full-FT 90.340.18 90.510.19 92.110.28 94.240.10 96.330.11 91.040.48 71.430.72 89.951.07 83.751.81 88.86

103K

R-Mask 85.180.43 85.870.04 87.090.61 89.312.04 93.610.53 84.053.91 61.143.51 78.594.42 60.536.68 80.60
Fish 88.140.18 88.360.16 87.500.06 92.290.24 95.220.27 91.680.31 69.160.76 90.520.51 84.720.75 86.95
PaFi 88.210.15 88.290.19 89.300.35 93.630.31 95.840.13 89.970.70 68.451.09 90.200.65 81.831.26 86.97
BitFit 88.640.10 88.390.18 88.940.26 93.260.22 95.380.13 89.801.12 69.081.07 89.541.35 80.872.60 86.43
ID3 89.380.07 89.640.10 89.970.01 93.670.17 95.640.23 92.100.13 70.620.44 91.010.14 87.122.17 88.13

320K

R-Mask 88.30.39 88.330.17 89.070.47 92.30.54 95.30.23 88.260.66 66.190.98 86.110.75 74.732.53 85.40
Fish 88.990.05 89.700.08 88.920.28 93.990.06 95.600.06 92.090.13 69.791.04 90.690.49 87.850.55 88.07
PaFi 89.610.10 89.730.15 90.350.22 93.930.11 96.140.07 90.370.24 68.911.16 90.520.62 81.592.01 87.68
ID3 89.730.07 89.910.09 90.420.20 94.060.10 95.950.07 92.070.22 72.070.99 91.260.28 87.731.45 89.15

Table 1: Performance comparison of different selective PEFT methods on GLUE tasks with DeBERTa-
v3 (He et al., 2021b) pretrained model. For each experiment, we report the mean and standard deviation
obtained across top three of four different runs. We highlight the best PEFT baseline within a comparable
budget in bold. We underline the tasks where the PEFT techniques outperform the FFT counterpart.
DeBERTa-v3 has only 103K bias terms; therefore, BitFit is applicable only with 103K budget. R-mask
refers the baseline with a random static mask.
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Figure 4: Performance of ID3 under different ϵ and exp values with DeBERTa-V3 backbone model.

four of nine GLUE tasks, indicating the impor-
tance of sparsification of adapters for more effi-
cient and effective fine-tuning. An empirical study
with adapters (Pfeiffer et al., 2020) narrates a sim-
ilar story as shown in Table 3. With a budget of
only 8M (sparsity 96%), ID3 can improve the per-
formance of an adapter-integrated RoBERTa-base
by a margin of 1.09%. SparseAdapter, another
popular sparsification technique for adapters, falls
short by 0.91% than ID3.

We further evaluate ID3 with different ϵ and
exp values and report the performance across three
different NLU tasks. Figure 4a highlights an
interesting trend where the best performance is
achieved typically with ϵ = 0.5. Low ϵ values
have less smoothing effect and, therefore, prevent
parameters with low magnitude from being un-
masked unfairly. The optimal selection remains
close at 0.5, which has more balanced effect on all
the parameters. A consistent trend is also observed
with exp (c.f. Figure 4b), where exp = −1 con-
sistently performs better than other values. This
indicates that parameter magnitude has a positive
dependence on the parameter importance.

5.2 Token Classification

We present the CoNLL benchmark results in Ta-
ble 4. FFT, with 184M parameters, sets the base-
line with an F1 score of 96.69% and a standard
deviation of 0.18. Among PEFT methods, ID3

excels with 103K parameters, achieving a top F1
score of 95.86% and a low standard deviation of
0.07, indicating both high performance and con-
sistency. Fish follows with an F1 score of 95.43%
(SD=0.27) and PaFi scores 95.23% (SD=0.20).
BitFit scores 94.62% but has a higher standard
deviation of 0.84, suggesting greater variability.
With a 320K parameter budget, ID3 improves to
an F1 score of 96.17 (SD=0.14), surpassing other
methods. PaFi scores 96.04 (SD=0.29) and Fish
scores 95.99 (SD=0.14). Notably, ID3 outper-
forms Fish by 0.43% and PaFi by 0.63% at 103K
parameters, demonstrating robustness. At 320K
parameters, ID3’s performance approaches that of
the FFT method, proving it to be a highly effective
alternative.

5.3 Text Generation

We report the results for the mathematical reason-
ing tasks in Table 5. Llama-7B, fine-tuned with
LoRA (r=32), achieves an average score of 59.5%,



Budget Method MNLI-m MNLI-mm QQP QNLI SST-2 STS-B CoLA MRPC RTE Avg
1.33M LoRA (r=8) 90.470.23 90.460.12 91.950.12 93.760.36 95.570.21 91.860.29 69.731.42 89.711.32 85.320.86 88.76

320K PaFi + LoRA (r=8) 90.120.1 90.060.42 91.610.34 94.310.12 96.030.06 91.190.18 70.50.59 90.280.57 84.720.55 88.76
320K ID3 + LoRA (r=8) 90.260.25 90.180.21 91.480.26 94.170.07 95.760.12 91.650.21 69.070.55 90.690.25 87.120.21 88.93

Table 2: Performance of PaFi and ID3 with LoRA+pretrained DeBERTa-v3 model on GLUE tasks.

Budget Method STS-B CoLA MRPC RTE Average
201M Pfeiffer 90.78 59.05 89.21 76.53 78.89
8M SparseAdapter + Pfeiffer 90.88 58.95 89.41 77.03 79.07
8M ID3 + Pfeiffer 90.71 59.84 89.95 79.42 79.98

Table 3: Performance of ID3 compared with
SparseAdapter (He et al., 2022) on Pfeiffer
adapter (Pfeiffer et al., 2020) on pretrained
RoBERTa-base (Liu et al., 2019) model.

Budget Full-FT Fish PaFi BitFit ID3 R-Mask

103K
-

95.430.27 95.230.2 94.620.84 95.860.07 85.427.03
320K 95.990.12 96.040.29 - 96.170.14 93.741.32
184M 96.690.18 -

Table 4: Performance of selective fine-tuning
methods with DeBERTa-v3 model on NER task
with different budgets. As the DeBERTa model
has total 103K bias terms, BitFit is applicable only
with 103K budget.

demonstrating strong performance across all tasks,
particularly in MultiArith (95.5%) and SingleEq
(81.7%). This serves as the baseline for compar-
ison with various PEFT methods. At a reduced
budget of 3.5M parameters, LoRA (r=2) main-
tains robust performance with an average score
of 58.1%, showing notable performance in Mul-
tiArith (96.7%) but a slight decline across other
tasks compared to the 201M budget. ID3 with
LoRA (r=32) achieves an average score of 58.6%,
slightly outperforming LoRA (r=2) (which has an
equivalent budget), with notable scores including
80.7% for AddSub and 79.3% for SingleEq, indi-
cating that ID3 improve performance by sparsify-
ing larger rank LoRA modules. PaFi with LoRA
shows an average score of 57.0%, with its best
performance in MultiArith (92.3%), but falls be-
hind ID3 and LoRA (r=32) full fine-tuning in most
tasks.

Increasing the LoRA rank to 4 (budget 7M) im-
proves its average score to 58.5%, with signif-
icant gains in GSM8K (36.9%) and MultiArith
(94.8%). ID3 with a 7M budget achieves the
highest average score in this category at 59.1%,
showing strong performance in GSM8K (38.3%)
and SVAMP (47.2%), suggesting that ID3 effec-
tively utilizes the additional parameters. PaFi,
with an average score of 56.4%, shows consistent
results but lags behind other methods in Multi-
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Figure 5: Dev performance at different model
checkpointing with ID3. The red line highlights
the performance obtained with repeat-S parame-
ter selection.

Arith (92.3%) and SVAMP (42.9%). ID3, along
with higher rank LoRA, consistently performs
well across different parameter budgets, specifi-
cally excelling in the 7M budget category with the
highest average score of 59.1%. Notably, ID3 sur-
passes the performance of the base LoRA in the
same budget range, demonstrating its efficiency
and effectiveness.

6 Discussions

We further study the behaviors of fine-tuned mod-
els under the incremental masking and answer
some of the questions relevant to selective fine-
tuning.

Why do we need incremental parameter selec-
tion? We explore a variant of ID3 with repeat-S
selection strategy instead of increment-S, which
we call repeat-D3. Figure 5 highlights that for
all the tasks – CoLA, MRPC and RTE, incre-
mental selection with < B number of updated
parameters can exhibit better validation perfor-
mance than the repeat-S selection method where
B number of parameters are unmasked and fine-
tuned in each training step. As highlighted in
Section 1, a completely exploration-based selec-
tion strategy can fine-tune too many redundant
parameters, potentially leading to worse out-of-
distribution performance. To understand how the
maximum budget impacts the fine-tuning process,
we experiment with different budgets, as high-
lighted in Figure 6. For budgets as low as 80K
(sparsity 99.95%), repeat-S selection might work
better than increment-S (the selection strategy of
ID3) selection. This could be due to significantly
fewer trainable parameters B

S during the initial



Budget Method AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg.
201M LoRA (r=32) 81.3 95.5 81.7 34.1 17.7 46.7 59.5
3.5M LoRA (r=2) 78.2 96.7 76.6 35.3 16.9 44.9 58.1
3.5M PaFi + LoRA (r=32) 78.7 92.3 76.8 33.9 16.9 43.2 57.0
3.5M ID3 + LoRA (r=32) 80.7 95.8 79.3 34.3 15.7 45.7 58.6
7M LoRA (r=4) 79.2 94.8 77.9 36.9 17.3 45.0 58.5
7M PaFi + LoRA (r=32) 75.7 92.3 76.2 34.9 16.5 42.9 56.4
7M ID3 + LoRA (r=32) 79.5 94.8 79.7 38.3 15.0 47.2 59.1

Table 5: Results on mathematical reasoning tasks with Llama-7B backbone model with LoRA.
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Figure 6: Performance of ID3 under with incre-
mental masking and repeat-S masking with differ-
ent budgets.

fine-tuning stage. However, increment-S selection
performs substantially better than repeat-S selec-
tion for higher budgets. Interestingly, for higher
budgets (sparsity < 99.82%), the performance for
repeat-S selection drops significantly. These anal-
yses also highlight the importance of dynamic pa-
rameter and budget selection. Traditional selective
PEFT methods use a fixed budget throughout the
model fine-tuning, which may not be optimal for
a given task. On the other hand, using incremen-
tal budgeting like ID3, we can save the intermedi-
ate checkpoints with only incremental parameters
being updated. Therefore, by preventing unneces-
sary parameter updation, ID3 can converge faster
and lead to better out-of-distribution performance.

Can we sparsify tensor parameters using ID3?
A relevant research objective with selective PEFT
techniques is to study their ability to sparsify ten-
sor parameters. Significant masking memory can
be optimized if a selective method unmasks scalar
parameters from a few selective tensor parameters.
For a model with M number of tensor parameters
{P i}Mi=1 fine-tuned with T steps, we define ‘ten-
sor sparsity’ as the number of parameters P j such
that ∄θk ∈ P j ∩ ΛT . Figure 8 highlights the ten-
sor sparsity for ID3 with increment-S and repeat-
S selection at different training iterations. For all
three tasks – CoLA, MRPC and RTE, tensor spar-
sity remains close to one for ID3 at the begin-
ning. As the training continues, the tensor sparsity
reduces as more scalar parameters are explored.

However, the reduction in tensor sparsity stabi-
lizes after a few training steps, indicating more
exploration from the same tensor parameters. A
similar behavior is also observed with repeat-S pa-
rameter selection. However, with this approach,
the tensor sparsity remains critically low, as this
selection method exceeds the budget and poten-
tially fine-tunes the entire model.

Are all the tensor parameters equally impor-
tant in selective fine-tuning? To answer this
question, we compute the sparsity probability for
each tensor parameter Pj as |Pj∩ΛT |

|Pj | . Using this
probability distribution over all the tensor param-
eters, we calculate the sparsity entropy of the fine-
tuned model. A high entropy indicates uniform
sparsity probability across different parameters,
indicating uniform parameter importance. Fig-
ure 9 suggests that for increment-S selection, ini-
tially, the entropy increases, indicating more ex-
ploration of important scalar parameters from dif-
ferent tensor parameters. However, after a few
training iterations, the model performs more ex-
ploitation by selecting scalar parameters from the
same tensor parameters. On the other hand, a
repeat-S parameter selection strategy performs ex-
ploration from the beginning, assigning impor-
tance to most of the tensor parameters. Fig-
ure 7 highlights the scalar parameter allocation for
different tensor parameters for the DeBERTa-v3
model on the CoLA task. With both increment-
S and repeat-S selection strategies, the initial pa-
rameter allocation remains sparse. After training,
the sparsity within the tensor parameter reduces.
However, it is interesting that increment-S selec-
tion introduces more tensor sparsity than repeat-S
selection. These behaviors justify that increment-
S selection is essential for assessing tensor param-
eter importance and sparse updation of model pa-
rameters.
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Figure 7: Allotted budget to different model parameters under increment-S and repeat-S masking for
CoLA task.
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Figure 8: Analysis of tensor sparsity with
increment-S and repeat-S selection strategies.

7 Conclusion

In this paper, we introduced ID3, a novel
parameter-efficient fine-tuning (PEFT) technique
using incremental-masking-based parameter se-
lection to enhance the fine-tuning of large lan-
guage models. ID3 dynamically evaluates and
updates parameter importance, effectively balanc-
ing exploration and exploitation. Our extensive
evaluations showed that ID3 significantly out-
performs traditional PEFT methods, with signif-
icantly less number of gradient updates. Ad-
ditionally, ID3 integrates seamlessly with other
PEFT methodologies, showcasing its versatility.
We provide an open-source toolkit with four se-
lective PEFT techniques to support reproducibil-
ity and further research. This study marks a
significant advancement in PEFT, improving per-
formance while reducing computational overhead
and enabling broader scalability of LLMs.

Limitations and Future Scope. While selec-
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Figure 9: Sparsity entropy with increment-S and
repeat-S selection strategies.

tive PEFT methods do reduce the number of gradi-
ent updates (with ID3 achieving competitive per-
formance in half as many updates), the current
implementation does not fully leverage this ef-
ficiency due to limitations in low-level C++ li-
braries, which predominantly support dense up-
dates. To overcome this, future work will aim to
integrate our method directly into the PyTorch li-
brary at a lower level, which could better realize
the theoretical speedup discussed. Additionally,
an intriguing research direction is to explore the
activation of parameters updated through selective
PEFT from a mechanistic perspective. Our cur-
rent work provides some insights into this area,
but a more detailed understanding could further
illuminate how selective fine-tuning affects large
pre-trained language models and enhance explain-
ability in this field.
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8 Appendix

8.1 Datasets and tasks

We evaluate all the methods using the eight tasks
from the GLUE benchmark as below.

1. RTE (Recognizing Textual Entailment) (Gi-
ampiccolo et al., 2007) - Each example con-
sists of two sentences, and the task is to pre-
dict whether the second sentence entails the
first sentence.

2. MRPC (Microsoft Research Paraphrase Cor-
pus) (Dolan and Brockett, 2005) - Predict
whether the given two sentences are seman-
tically equivalent.

3. CoLA (Corpus of Linguistic Acceptability)
(Warstadt et al., 2019) - The task is to pre-
dict whether the given sentence is linguisti-
cally acceptable.

4. STS-B (Semantic Textual Similarity Bench-
mark) (Cer et al., 2017) - The task is to pre-
dict how similar the given two sentences are
on a scale of 1 to 5.

5. SST-2 (Stanford Sentiment Treebank)
(Socher et al., 2013) - The task is to predict
whether the sentiment of a given movie
review is positive or negative.
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6. QNLI (Question-answering NLI) (Rajpurkar
et al., 2016)- Each example consists of a
question and a context. The task is to pre-
dict whether the given context contains the
answer to the question.

7. QQP (Quora Question Pairs) (Wang et al.,
2018) - The task is to determine whether a
given question pair is semantically equiva-
lent.

8. MNLI (Multi-Genre Natural Language In-
ference) (Williams et al., 2018) - Given a
premise sentence and a hypothesis sentence,
the task is to predict whether the premise en-
tails the hypothesis or contradicts the hypoth-
esis or neither. This data-set has two vali-
dation sets - matched (in-domain) and mis-
matched (cross-domain) data.

For token classification, we use the shared task
of CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003) that focuses on language-independent
named-entity recognition. The goal is to classify
each token into four entities - persons, locations,
organizations and miscellaneous entities that do
not belong to the previous three groups.

We use six datasets from the Math Reasoning
benchmark for text generation tasks.

1. GSM8K (Cobbe et al., 2021) - This dataset
contains diverse grade school math word
problems. The task is to perform a sequence
of elementary calculations to get final answer.

2. SVAMP (Patel et al., 2021) - This dataset
is developed by applying simple variations
to one-unkown arithmetic word problems of
grade level up to 4.

3. MultiArith (Roy and Roth, 2015) - This
dataset contains multi-step arithmetic word
problems that use the basic operations. eg.
addition followed by subtraction, subtraction
followed by division etc.

4. AddSub (Hosseini et al., 2014) - This cor-
pus contains arithmetic problems with addi-
tion and subtraction.

5. AQuA (Ling et al., 2017) - This dataset con-
tains algebraic word problems along with an-
swer rationales.

Domain Dataset # train # validation # test

GLUE

RTE 2.5K 277 3K
MRPC 3.7K 408 1.7K
CoLA 8.5K 1K 1K
STS-b 5.7K 1.5K 1.4K
SST-2 67K 872 1.8K
QNLI 105K 5.5K 5.5K
QQP 364K 40K 390K

MNLI 393K
m - 10K 10K

mm - 10K 10K

NER CoNLL2003 14K 3.2K 3.5K

Math Reasoning

Math10k 10K - -
GSM8K 8.8K - 1319
SVAMP - - 1000
MultiArith - - 600
AddSub - - 395
AQuA 100K - 254
SingleEq - - 508

Table 6: Datasets and data splits for different tasks
used in the paper.

6. SingleEq (Koncel-Kedziorski et al., 2015)
- This dataset contains sentences express-
ing mathematical relations that form a single
equation.

The train, validation and test splits of all the
datasets are shown in Table 6.

8.2 Hyperparameters

For NLU and NER tasks, we use batch size 16
across all models and PEFT methods. We choose
four learning rates: {1 × 10−4, 3 × 10−4, 5 ×
10−4, 7 × 10−4}3 to fine-tune the models. These
learning rates were chosen without bias towards
a particular method and considering the common
pattern of choosing learning rates in the 1× 10−3

to 1 × 10−4. We average the best three out of
these four runs for statistical reliability. We use
a batch size of 4 for generative tasks and fine-tune
the models with a learning rate of 3 × 10−4 for
3 epochs. These and other PEFT method-specific
hyper-parameters are shown in Table 7a.

Metric used for evaluation, number of epochs,
number of eval steps and max sequence length are
shown in Table 7b.

3For full fine-tuning these learning-rates are very high and
the model diverges. Hence for FFT we choose {5×10−6, 7×
10−6, 1× 10−5, 3× 10−5}.



Category NLU NER Generative Tasks

PEFT Method Hyper-parameter All tasks Conll2003 All tasks

All methods

batch size 16 16 4

learning rate

1× 10−4 1× 10−4

3× 10−43× 10−4 3× 10−4

5× 10−4 5× 10−4

7× 10−4 7× 10−4

seed {6, 7, 8, 9} {6, 7, 8, 9} 42

ID3
exp 2 2 0
ϵ 1 1 1

Fish
num_samples 1024 1024

-sample_type "label" "label"
grad_type "square" "square"

LoRA

lora_r 8

-

8
lora_alpha 8 16

lora_modules

query_proj query_proj
key_proj key_proj

value_proj value_proj
attention.output.dense up_proj

intermediate.dense down_proj
output.dense

(a) Common and PEFT method specific hyper-parameters

Benchmark Dataset Metric Epochs Eval_Steps Max Seq Length

GLUE

RTE Accuracy 30 100 256
MRPC Accuracy 30 100 256
CoLA Matthews Correlation 20 200 256
STS-B Avg of Spearman and Pearson Corr. 15 200 256
SST-2 Accuracy 7 500 256
QNLI Accuracy 7 1000 256
QQP Accuracy 3 4000 256
MNLI Accuracy 3 4000 256

NER CoNLL2003 F1 20 300 384

Generative

Math10K - 3 - 256
GSM8K Accuracy - 80 256
SVAMP Accuracy - 80 256
MultiArith Accuracy - 80 256
AddSub Accuracy - 80 256
AQuA Accuracy - 80 256
SingleEq Accuracy - 80 256

(b) Task specific hyper-parameters

Table 7: All the hyper-parameters used in the paper.


